Jacobi Davidson methods for generalized MHD eigenvalue problems:
Abstract: "A Jacobi-Davidson algorithm for computing selected eigenvalues and associated eigenvectors of the generalized eigenvalue problem Ax=[lambda]Bx is presented. In this paper the emphasis is put on the case where one of the matrices, say the B-matrix, is Hermitian positive definite. The...
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam
1995
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1995,14 |
Schlagworte: | |
Zusammenfassung: | Abstract: "A Jacobi-Davidson algorithm for computing selected eigenvalues and associated eigenvectors of the generalized eigenvalue problem Ax=[lambda]Bx is presented. In this paper the emphasis is put on the case where one of the matrices, say the B-matrix, is Hermitian positive definite. The method is an inner-outer iterative scheme, in which the inner iteration process consists of solving linear systems to some accuracy. The factorization of either matrix is avoided. Numerical experiments are presented for problems arising in magnetohydrodynamics (MHD)." |
Beschreibung: | 7 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011062776 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 961115s1995 |||| 00||| engod | ||
035 | |a (OCoLC)34740296 | ||
035 | |a (DE-599)BVBBV011062776 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
245 | 1 | 0 | |a Jacobi Davidson methods for generalized MHD eigenvalue problems |c J. G. C. Booten ... |
264 | 1 | |a Amsterdam |c 1995 | |
300 | |a 7 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1995,14 | |
520 | 3 | |a Abstract: "A Jacobi-Davidson algorithm for computing selected eigenvalues and associated eigenvectors of the generalized eigenvalue problem Ax=[lambda]Bx is presented. In this paper the emphasis is put on the case where one of the matrices, say the B-matrix, is Hermitian positive definite. The method is an inner-outer iterative scheme, in which the inner iteration process consists of solving linear systems to some accuracy. The factorization of either matrix is avoided. Numerical experiments are presented for problems arising in magnetohydrodynamics (MHD)." | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Eigenvalues | |
650 | 4 | |a Eigenvectors | |
650 | 4 | |a Magnetohydrodynamics | |
700 | 1 | |a Booten, J. G. |e Sonstige |4 oth | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1995,14 |w (DE-604)BV010177152 |9 1995,14 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007408964 |
Datensatz im Suchindex
_version_ | 1804125551472934912 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV011062776 |
ctrlnum | (OCoLC)34740296 (DE-599)BVBBV011062776 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01618nam a2200325 cb4500</leader><controlfield tag="001">BV011062776</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961115s1995 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)34740296</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011062776</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Jacobi Davidson methods for generalized MHD eigenvalue problems</subfield><subfield code="c">J. G. C. Booten ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1995,14</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "A Jacobi-Davidson algorithm for computing selected eigenvalues and associated eigenvectors of the generalized eigenvalue problem Ax=[lambda]Bx is presented. In this paper the emphasis is put on the case where one of the matrices, say the B-matrix, is Hermitian positive definite. The method is an inner-outer iterative scheme, in which the inner iteration process consists of solving linear systems to some accuracy. The factorization of either matrix is avoided. Numerical experiments are presented for problems arising in magnetohydrodynamics (MHD)."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eigenvalues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eigenvectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetohydrodynamics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Booten, J. G.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1995,14</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1995,14</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007408964</subfield></datafield></record></collection> |
id | DE-604.BV011062776 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:03:21Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007408964 |
oclc_num | 34740296 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 7 S. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Jacobi Davidson methods for generalized MHD eigenvalue problems J. G. C. Booten ... Amsterdam 1995 7 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1995,14 Abstract: "A Jacobi-Davidson algorithm for computing selected eigenvalues and associated eigenvectors of the generalized eigenvalue problem Ax=[lambda]Bx is presented. In this paper the emphasis is put on the case where one of the matrices, say the B-matrix, is Hermitian positive definite. The method is an inner-outer iterative scheme, in which the inner iteration process consists of solving linear systems to some accuracy. The factorization of either matrix is avoided. Numerical experiments are presented for problems arising in magnetohydrodynamics (MHD)." Algorithms Eigenvalues Eigenvectors Magnetohydrodynamics Booten, J. G. Sonstige oth Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1995,14 (DE-604)BV010177152 1995,14 |
spellingShingle | Jacobi Davidson methods for generalized MHD eigenvalue problems Algorithms Eigenvalues Eigenvectors Magnetohydrodynamics |
title | Jacobi Davidson methods for generalized MHD eigenvalue problems |
title_auth | Jacobi Davidson methods for generalized MHD eigenvalue problems |
title_exact_search | Jacobi Davidson methods for generalized MHD eigenvalue problems |
title_full | Jacobi Davidson methods for generalized MHD eigenvalue problems J. G. C. Booten ... |
title_fullStr | Jacobi Davidson methods for generalized MHD eigenvalue problems J. G. C. Booten ... |
title_full_unstemmed | Jacobi Davidson methods for generalized MHD eigenvalue problems J. G. C. Booten ... |
title_short | Jacobi Davidson methods for generalized MHD eigenvalue problems |
title_sort | jacobi davidson methods for generalized mhd eigenvalue problems |
topic | Algorithms Eigenvalues Eigenvectors Magnetohydrodynamics |
topic_facet | Algorithms Eigenvalues Eigenvectors Magnetohydrodynamics |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT bootenjg jacobidavidsonmethodsforgeneralizedmhdeigenvalueproblems |