Triangularly implicit iteration methods for ODE IVP solvers:
Abstract: "It often happens that iteration processes used for solving the implicit relations arising in ODE-IVP methods only start to converge rapidly after a certain number of iterations. Fast convergence right from the beginning is particularly important if we want to use so- called step-para...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1995
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1995,10 |
Schlagworte: | |
Zusammenfassung: | Abstract: "It often happens that iteration processes used for solving the implicit relations arising in ODE-IVP methods only start to converge rapidly after a certain number of iterations. Fast convergence right from the beginning is particularly important if we want to use so- called step-parallel iteration in which the iteration method is concurrently applied at a number of step points. In this paper, we construct highly parallel iteration methods that do converge fast from the first iteration on. Our starting point is the PDIRK method (parallel, diagonal-implicit, iterated Runge-Kutta method), designed for solving implicit Runge-Kutta equations on parallel computers. The PDIRK method may be considered as Newton type iteration in which the Newton Jacobian is 'simplified' to block-diagonal form. However, when applied in a step- parallel mode, it turns out that its relatively slow convergence, or even divergent behaviour, reduces the effectiveness of the step-parallel scheme. By replacing the block-diagonal Newton Jacobian approximation in PDIRK by a block-triangular approximation, we do achieve convergence right from the beginning at a modest increase of the computational costs. Our convergence analysis of the block-triangular approach will be given for the wide class of general linear methods, but the derivation of iteration schemes is limited to Runge-Kutta based methods. A number of experiments show that the new parallel, triangular-implicit, iterated Runge-Kutta method (PTIRK method) is a considerable improvement over the PDIRK method." |
Beschreibung: | 21 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011059854 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 961114s1995 |||| 00||| engod | ||
035 | |a (OCoLC)35448392 | ||
035 | |a (DE-599)BVBBV011059854 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Houwen, Pieter J. van der |e Verfasser |4 aut | |
245 | 1 | 0 | |a Triangularly implicit iteration methods for ODE IVP solvers |c P. J. van der Houwen ; J. J. B. de Swart |
264 | 1 | |a Amsterdam |c 1995 | |
300 | |a 21 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1995,10 | |
520 | 3 | |a Abstract: "It often happens that iteration processes used for solving the implicit relations arising in ODE-IVP methods only start to converge rapidly after a certain number of iterations. Fast convergence right from the beginning is particularly important if we want to use so- called step-parallel iteration in which the iteration method is concurrently applied at a number of step points. In this paper, we construct highly parallel iteration methods that do converge fast from the first iteration on. Our starting point is the PDIRK method (parallel, diagonal-implicit, iterated Runge-Kutta method), designed for solving implicit Runge-Kutta equations on parallel computers. The PDIRK method may be considered as Newton type iteration in which the Newton Jacobian is 'simplified' to block-diagonal form. However, when applied in a step- parallel mode, it turns out that its relatively slow convergence, or even divergent behaviour, reduces the effectiveness of the step-parallel scheme. By replacing the block-diagonal Newton Jacobian approximation in PDIRK by a block-triangular approximation, we do achieve convergence right from the beginning at a modest increase of the computational costs. Our convergence analysis of the block-triangular approach will be given for the wide class of general linear methods, but the derivation of iteration schemes is limited to Runge-Kutta based methods. A number of experiments show that the new parallel, triangular-implicit, iterated Runge-Kutta method (PTIRK method) is a considerable improvement over the PDIRK method." | |
650 | 4 | |a Initial value problems | |
650 | 4 | |a Iterative methods (Mathematics) | |
650 | 4 | |a Runge-Kutta formulas | |
700 | 1 | |a Swart, J. J. de |e Verfasser |4 aut | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1995,10 |w (DE-604)BV010177152 |9 1995,10 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007407092 |
Datensatz im Suchindex
_version_ | 1804125548606128128 |
---|---|
any_adam_object | |
author | Houwen, Pieter J. van der Swart, J. J. de |
author_facet | Houwen, Pieter J. van der Swart, J. J. de |
author_role | aut aut |
author_sort | Houwen, Pieter J. van der |
author_variant | p j v d h pjvd pjvdh j j d s jjd jjds |
building | Verbundindex |
bvnumber | BV011059854 |
ctrlnum | (OCoLC)35448392 (DE-599)BVBBV011059854 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02704nam a2200325 cb4500</leader><controlfield tag="001">BV011059854</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961114s1995 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)35448392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011059854</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Houwen, Pieter J. van der</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Triangularly implicit iteration methods for ODE IVP solvers</subfield><subfield code="c">P. J. van der Houwen ; J. J. B. de Swart</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">21 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1995,10</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "It often happens that iteration processes used for solving the implicit relations arising in ODE-IVP methods only start to converge rapidly after a certain number of iterations. Fast convergence right from the beginning is particularly important if we want to use so- called step-parallel iteration in which the iteration method is concurrently applied at a number of step points. In this paper, we construct highly parallel iteration methods that do converge fast from the first iteration on. Our starting point is the PDIRK method (parallel, diagonal-implicit, iterated Runge-Kutta method), designed for solving implicit Runge-Kutta equations on parallel computers. The PDIRK method may be considered as Newton type iteration in which the Newton Jacobian is 'simplified' to block-diagonal form. However, when applied in a step- parallel mode, it turns out that its relatively slow convergence, or even divergent behaviour, reduces the effectiveness of the step-parallel scheme. By replacing the block-diagonal Newton Jacobian approximation in PDIRK by a block-triangular approximation, we do achieve convergence right from the beginning at a modest increase of the computational costs. Our convergence analysis of the block-triangular approach will be given for the wide class of general linear methods, but the derivation of iteration schemes is limited to Runge-Kutta based methods. A number of experiments show that the new parallel, triangular-implicit, iterated Runge-Kutta method (PTIRK method) is a considerable improvement over the PDIRK method."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterative methods (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta formulas</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Swart, J. J. de</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1995,10</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1995,10</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007407092</subfield></datafield></record></collection> |
id | DE-604.BV011059854 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:03:19Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007407092 |
oclc_num | 35448392 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 21 S. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Houwen, Pieter J. van der Verfasser aut Triangularly implicit iteration methods for ODE IVP solvers P. J. van der Houwen ; J. J. B. de Swart Amsterdam 1995 21 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1995,10 Abstract: "It often happens that iteration processes used for solving the implicit relations arising in ODE-IVP methods only start to converge rapidly after a certain number of iterations. Fast convergence right from the beginning is particularly important if we want to use so- called step-parallel iteration in which the iteration method is concurrently applied at a number of step points. In this paper, we construct highly parallel iteration methods that do converge fast from the first iteration on. Our starting point is the PDIRK method (parallel, diagonal-implicit, iterated Runge-Kutta method), designed for solving implicit Runge-Kutta equations on parallel computers. The PDIRK method may be considered as Newton type iteration in which the Newton Jacobian is 'simplified' to block-diagonal form. However, when applied in a step- parallel mode, it turns out that its relatively slow convergence, or even divergent behaviour, reduces the effectiveness of the step-parallel scheme. By replacing the block-diagonal Newton Jacobian approximation in PDIRK by a block-triangular approximation, we do achieve convergence right from the beginning at a modest increase of the computational costs. Our convergence analysis of the block-triangular approach will be given for the wide class of general linear methods, but the derivation of iteration schemes is limited to Runge-Kutta based methods. A number of experiments show that the new parallel, triangular-implicit, iterated Runge-Kutta method (PTIRK method) is a considerable improvement over the PDIRK method." Initial value problems Iterative methods (Mathematics) Runge-Kutta formulas Swart, J. J. de Verfasser aut Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1995,10 (DE-604)BV010177152 1995,10 |
spellingShingle | Houwen, Pieter J. van der Swart, J. J. de Triangularly implicit iteration methods for ODE IVP solvers Initial value problems Iterative methods (Mathematics) Runge-Kutta formulas |
title | Triangularly implicit iteration methods for ODE IVP solvers |
title_auth | Triangularly implicit iteration methods for ODE IVP solvers |
title_exact_search | Triangularly implicit iteration methods for ODE IVP solvers |
title_full | Triangularly implicit iteration methods for ODE IVP solvers P. J. van der Houwen ; J. J. B. de Swart |
title_fullStr | Triangularly implicit iteration methods for ODE IVP solvers P. J. van der Houwen ; J. J. B. de Swart |
title_full_unstemmed | Triangularly implicit iteration methods for ODE IVP solvers P. J. van der Houwen ; J. J. B. de Swart |
title_short | Triangularly implicit iteration methods for ODE IVP solvers |
title_sort | triangularly implicit iteration methods for ode ivp solvers |
topic | Initial value problems Iterative methods (Mathematics) Runge-Kutta formulas |
topic_facet | Initial value problems Iterative methods (Mathematics) Runge-Kutta formulas |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT houwenpieterjvander triangularlyimplicititerationmethodsforodeivpsolvers AT swartjjde triangularlyimplicititerationmethodsforodeivpsolvers |