Step parallel algorithms for stiff initial value problems:
Abstract: "For the parallel integration of stiff initial value problems, three types of parallelism can be employed: 'parallelism across the problem', 'parallelism across the method' and 'parallelism across the steps'. Recently, methods based on Runge-Kutta schemes...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1995
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1995,7 |
Schlagworte: | |
Zusammenfassung: | Abstract: "For the parallel integration of stiff initial value problems, three types of parallelism can be employed: 'parallelism across the problem', 'parallelism across the method' and 'parallelism across the steps'. Recently, methods based on Runge-Kutta schemes that use parallelism across the method have been proposed in [5,6]. These methods solve implicit Runge-Kutta schemes by means of the so-called diagonally iteration scheme and are called PDIRK methods. The experiments described in [5], show that the speedup factor of certain high-order PDIRK methods, is about 2 with respect to a good sequential code. However, a disadvantage of the high-order PDIRK methods is, that a relatively large number of iterations is needed for each step. This disadvantage can be compensated by employing step-parallelism. Step-parallel methods are methods in which a number of steps are treated simultaneously. This form of parallelism can be applied to any predictor-corrector method. A common feature of this approach is their poor convergence behaviour, unless the various strategies are carefully designed. In the present paper, we describe two strategies for the PDIRK across the steps method. Example problems tested in this paper show for the best strategy, a speed-up factor ranging from 4 to 7 with respect to the best sequential codes." |
Beschreibung: | 18 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011059717 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 961114s1995 |||| 00||| engod | ||
035 | |a (OCoLC)35448390 | ||
035 | |a (DE-599)BVBBV011059717 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Veen, W. A. van der |e Verfasser |4 aut | |
245 | 1 | 0 | |a Step parallel algorithms for stiff initial value problems |c W. A. van der Veen |
264 | 1 | |a Amsterdam |c 1995 | |
300 | |a 18 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1995,7 | |
520 | 3 | |a Abstract: "For the parallel integration of stiff initial value problems, three types of parallelism can be employed: 'parallelism across the problem', 'parallelism across the method' and 'parallelism across the steps'. Recently, methods based on Runge-Kutta schemes that use parallelism across the method have been proposed in [5,6]. These methods solve implicit Runge-Kutta schemes by means of the so-called diagonally iteration scheme and are called PDIRK methods. The experiments described in [5], show that the speedup factor of certain high-order PDIRK methods, is about 2 with respect to a good sequential code. However, a disadvantage of the high-order PDIRK methods is, that a relatively large number of iterations is needed for each step. This disadvantage can be compensated by employing step-parallelism. Step-parallel methods are methods in which a number of steps are treated simultaneously. This form of parallelism can be applied to any predictor-corrector method. A common feature of this approach is their poor convergence behaviour, unless the various strategies are carefully designed. In the present paper, we describe two strategies for the PDIRK across the steps method. Example problems tested in this paper show for the best strategy, a speed-up factor ranging from 4 to 7 with respect to the best sequential codes." | |
650 | 4 | |a Initial value problems | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Runge-Kutta formulas | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1995,7 |w (DE-604)BV010177152 |9 1995,7 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007406963 |
Datensatz im Suchindex
_version_ | 1804125548436258816 |
---|---|
any_adam_object | |
author | Veen, W. A. van der |
author_facet | Veen, W. A. van der |
author_role | aut |
author_sort | Veen, W. A. van der |
author_variant | w a v d v wavd wavdv |
building | Verbundindex |
bvnumber | BV011059717 |
ctrlnum | (OCoLC)35448390 (DE-599)BVBBV011059717 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02383nam a2200313 cb4500</leader><controlfield tag="001">BV011059717</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961114s1995 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)35448390</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011059717</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Veen, W. A. van der</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Step parallel algorithms for stiff initial value problems</subfield><subfield code="c">W. A. van der Veen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1995,7</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "For the parallel integration of stiff initial value problems, three types of parallelism can be employed: 'parallelism across the problem', 'parallelism across the method' and 'parallelism across the steps'. Recently, methods based on Runge-Kutta schemes that use parallelism across the method have been proposed in [5,6]. These methods solve implicit Runge-Kutta schemes by means of the so-called diagonally iteration scheme and are called PDIRK methods. The experiments described in [5], show that the speedup factor of certain high-order PDIRK methods, is about 2 with respect to a good sequential code. However, a disadvantage of the high-order PDIRK methods is, that a relatively large number of iterations is needed for each step. This disadvantage can be compensated by employing step-parallelism. Step-parallel methods are methods in which a number of steps are treated simultaneously. This form of parallelism can be applied to any predictor-corrector method. A common feature of this approach is their poor convergence behaviour, unless the various strategies are carefully designed. In the present paper, we describe two strategies for the PDIRK across the steps method. Example problems tested in this paper show for the best strategy, a speed-up factor ranging from 4 to 7 with respect to the best sequential codes."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta formulas</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1995,7</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1995,7</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007406963</subfield></datafield></record></collection> |
id | DE-604.BV011059717 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:03:19Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007406963 |
oclc_num | 35448390 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 18 S. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Veen, W. A. van der Verfasser aut Step parallel algorithms for stiff initial value problems W. A. van der Veen Amsterdam 1995 18 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1995,7 Abstract: "For the parallel integration of stiff initial value problems, three types of parallelism can be employed: 'parallelism across the problem', 'parallelism across the method' and 'parallelism across the steps'. Recently, methods based on Runge-Kutta schemes that use parallelism across the method have been proposed in [5,6]. These methods solve implicit Runge-Kutta schemes by means of the so-called diagonally iteration scheme and are called PDIRK methods. The experiments described in [5], show that the speedup factor of certain high-order PDIRK methods, is about 2 with respect to a good sequential code. However, a disadvantage of the high-order PDIRK methods is, that a relatively large number of iterations is needed for each step. This disadvantage can be compensated by employing step-parallelism. Step-parallel methods are methods in which a number of steps are treated simultaneously. This form of parallelism can be applied to any predictor-corrector method. A common feature of this approach is their poor convergence behaviour, unless the various strategies are carefully designed. In the present paper, we describe two strategies for the PDIRK across the steps method. Example problems tested in this paper show for the best strategy, a speed-up factor ranging from 4 to 7 with respect to the best sequential codes." Initial value problems Numerical analysis Runge-Kutta formulas Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1995,7 (DE-604)BV010177152 1995,7 |
spellingShingle | Veen, W. A. van der Step parallel algorithms for stiff initial value problems Initial value problems Numerical analysis Runge-Kutta formulas |
title | Step parallel algorithms for stiff initial value problems |
title_auth | Step parallel algorithms for stiff initial value problems |
title_exact_search | Step parallel algorithms for stiff initial value problems |
title_full | Step parallel algorithms for stiff initial value problems W. A. van der Veen |
title_fullStr | Step parallel algorithms for stiff initial value problems W. A. van der Veen |
title_full_unstemmed | Step parallel algorithms for stiff initial value problems W. A. van der Veen |
title_short | Step parallel algorithms for stiff initial value problems |
title_sort | step parallel algorithms for stiff initial value problems |
topic | Initial value problems Numerical analysis Runge-Kutta formulas |
topic_facet | Initial value problems Numerical analysis Runge-Kutta formulas |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT veenwavander stepparallelalgorithmsforstiffinitialvalueproblems |