A radial basis function neural network for parts identification of three-dimensional shapes:
Abstract: "The discrimination of volumetric pieces or parts of objects from range data is one key element for achieving 3-D object recognition. In this paper it is shown that previously segmented and acquired superquadrics from range data can be reliably mapped into a set of qualitative volumet...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Edinburgh
1994
|
Schriftenreihe: | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper
728 |
Schlagworte: | |
Zusammenfassung: | Abstract: "The discrimination of volumetric pieces or parts of objects from range data is one key element for achieving 3-D object recognition. In this paper it is shown that previously segmented and acquired superquadrics from range data can be reliably mapped into a set of qualitative volumetric shapes (geons) by means of an RBF (Radial Basis Function) neural network classifier. We use a regularised RBF classifier and the results are shown to be both reliable and efficient in the context of range image understanding." |
Beschreibung: | 8 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011043264 | ||
003 | DE-604 | ||
005 | 19961107 | ||
007 | t | ||
008 | 961107s1994 |||| 00||| engod | ||
035 | |a (OCoLC)34847617 | ||
035 | |a (DE-599)BVBBV011043264 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Borges, Díbio L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A radial basis function neural network for parts identification of three-dimensional shapes |c Borges, D. L. ; Orr, M. J. ; Fisher, R. B. |
264 | 1 | |a Edinburgh |c 1994 | |
300 | |a 8 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |v 728 | |
520 | 3 | |a Abstract: "The discrimination of volumetric pieces or parts of objects from range data is one key element for achieving 3-D object recognition. In this paper it is shown that previously segmented and acquired superquadrics from range data can be reliably mapped into a set of qualitative volumetric shapes (geons) by means of an RBF (Radial Basis Function) neural network classifier. We use a regularised RBF classifier and the results are shown to be both reliable and efficient in the context of range image understanding." | |
650 | 7 | |a Bionics and artificial intelligence |2 sigle | |
650 | 7 | |a Pattern recognition, image processing and remote sensing |2 sigle | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 4 | |a Visual discrimination | |
700 | 1 | |a Orr, Mark J. |e Verfasser |4 aut | |
700 | 1 | |a Fisher, Robert B. |e Verfasser |4 aut | |
810 | 2 | |a Department of Artificial Intelligence: DAI research paper |t University <Edinburgh> |v 728 |w (DE-604)BV010450646 |9 728 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007394598 |
Datensatz im Suchindex
_version_ | 1804125532483223552 |
---|---|
any_adam_object | |
author | Borges, Díbio L. Orr, Mark J. Fisher, Robert B. |
author_facet | Borges, Díbio L. Orr, Mark J. Fisher, Robert B. |
author_role | aut aut aut |
author_sort | Borges, Díbio L. |
author_variant | d l b dl dlb m j o mj mjo r b f rb rbf |
building | Verbundindex |
bvnumber | BV011043264 |
ctrlnum | (OCoLC)34847617 (DE-599)BVBBV011043264 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01816nam a2200349 cb4500</leader><controlfield tag="001">BV011043264</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19961107 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961107s1994 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)34847617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011043264</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borges, Díbio L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A radial basis function neural network for parts identification of three-dimensional shapes</subfield><subfield code="c">Borges, D. L. ; Orr, M. J. ; Fisher, R. B.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Edinburgh</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">University <Edinburgh> / Department of Artificial Intelligence: DAI research paper</subfield><subfield code="v">728</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "The discrimination of volumetric pieces or parts of objects from range data is one key element for achieving 3-D object recognition. In this paper it is shown that previously segmented and acquired superquadrics from range data can be reliably mapped into a set of qualitative volumetric shapes (geons) by means of an RBF (Radial Basis Function) neural network classifier. We use a regularised RBF classifier and the results are shown to be both reliable and efficient in the context of range image understanding."</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bionics and artificial intelligence</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pattern recognition, image processing and remote sensing</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visual discrimination</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Orr, Mark J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fisher, Robert B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Artificial Intelligence: DAI research paper</subfield><subfield code="t">University <Edinburgh></subfield><subfield code="v">728</subfield><subfield code="w">(DE-604)BV010450646</subfield><subfield code="9">728</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007394598</subfield></datafield></record></collection> |
id | DE-604.BV011043264 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:03:03Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007394598 |
oclc_num | 34847617 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 8 S. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
record_format | marc |
series2 | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |
spelling | Borges, Díbio L. Verfasser aut A radial basis function neural network for parts identification of three-dimensional shapes Borges, D. L. ; Orr, M. J. ; Fisher, R. B. Edinburgh 1994 8 S. txt rdacontent n rdamedia nc rdacarrier University <Edinburgh> / Department of Artificial Intelligence: DAI research paper 728 Abstract: "The discrimination of volumetric pieces or parts of objects from range data is one key element for achieving 3-D object recognition. In this paper it is shown that previously segmented and acquired superquadrics from range data can be reliably mapped into a set of qualitative volumetric shapes (geons) by means of an RBF (Radial Basis Function) neural network classifier. We use a regularised RBF classifier and the results are shown to be both reliable and efficient in the context of range image understanding." Bionics and artificial intelligence sigle Pattern recognition, image processing and remote sensing sigle Neural networks (Computer science) Visual discrimination Orr, Mark J. Verfasser aut Fisher, Robert B. Verfasser aut Department of Artificial Intelligence: DAI research paper University <Edinburgh> 728 (DE-604)BV010450646 728 |
spellingShingle | Borges, Díbio L. Orr, Mark J. Fisher, Robert B. A radial basis function neural network for parts identification of three-dimensional shapes Bionics and artificial intelligence sigle Pattern recognition, image processing and remote sensing sigle Neural networks (Computer science) Visual discrimination |
title | A radial basis function neural network for parts identification of three-dimensional shapes |
title_auth | A radial basis function neural network for parts identification of three-dimensional shapes |
title_exact_search | A radial basis function neural network for parts identification of three-dimensional shapes |
title_full | A radial basis function neural network for parts identification of three-dimensional shapes Borges, D. L. ; Orr, M. J. ; Fisher, R. B. |
title_fullStr | A radial basis function neural network for parts identification of three-dimensional shapes Borges, D. L. ; Orr, M. J. ; Fisher, R. B. |
title_full_unstemmed | A radial basis function neural network for parts identification of three-dimensional shapes Borges, D. L. ; Orr, M. J. ; Fisher, R. B. |
title_short | A radial basis function neural network for parts identification of three-dimensional shapes |
title_sort | a radial basis function neural network for parts identification of three dimensional shapes |
topic | Bionics and artificial intelligence sigle Pattern recognition, image processing and remote sensing sigle Neural networks (Computer science) Visual discrimination |
topic_facet | Bionics and artificial intelligence Pattern recognition, image processing and remote sensing Neural networks (Computer science) Visual discrimination |
volume_link | (DE-604)BV010450646 |
work_keys_str_mv | AT borgesdibiol aradialbasisfunctionneuralnetworkforpartsidentificationofthreedimensionalshapes AT orrmarkj aradialbasisfunctionneuralnetworkforpartsidentificationofthreedimensionalshapes AT fisherrobertb aradialbasisfunctionneuralnetworkforpartsidentificationofthreedimensionalshapes |