A radial basis function neural network for parts identification of three-dimensional shapes:

Abstract: "The discrimination of volumetric pieces or parts of objects from range data is one key element for achieving 3-D object recognition. In this paper it is shown that previously segmented and acquired superquadrics from range data can be reliably mapped into a set of qualitative volumet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Borges, Díbio L. (VerfasserIn), Orr, Mark J. (VerfasserIn), Fisher, Robert B. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Edinburgh 1994
Schriftenreihe:University <Edinburgh> / Department of Artificial Intelligence: DAI research paper 728
Schlagworte:
Zusammenfassung:Abstract: "The discrimination of volumetric pieces or parts of objects from range data is one key element for achieving 3-D object recognition. In this paper it is shown that previously segmented and acquired superquadrics from range data can be reliably mapped into a set of qualitative volumetric shapes (geons) by means of an RBF (Radial Basis Function) neural network classifier. We use a regularised RBF classifier and the results are shown to be both reliable and efficient in the context of range image understanding."
Beschreibung:8 S.

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!