Splitting methods for three-dimensional biochemical transport:
Abstract: "Splitting methods for the time integration of three- dimensional transport-chemistry models offer interesting prospects: second- order accuracy can be combined with sufficient stability, and the amount of implicitness can be reduced to a manageable level. Furthermore, exploiting the...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1996
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1996,7 |
Schlagworte: | |
Zusammenfassung: | Abstract: "Splitting methods for the time integration of three- dimensional transport-chemistry models offer interesting prospects: second- order accuracy can be combined with sufficient stability, and the amount of implicitness can be reduced to a manageable level. Furthermore, exploiting the parallelization and vectorization features of the algorithm, a realistic simulation with many species over long time intervals becomes feasible. As an alternative to the usual splitting functions, such as co- ordinate splitting or operator splitting, we discuss in this paper a splitting function that is of hopscotch type. Both for a second-order, symmetric spatial discretization (resulting in a three-point coupling in each direction), and for a third-order, upwind discretization (giving rise to a five-point coupling, in general), we define a particular variant of this hopscotch splitting. These splitting functions will be combined with an appropriate splitting formula, resulting in second-order (in time) splitting methods. A common feature of both hopscotch splitting functions is that we have only coupling in the vertical direction, resulting in a stability behaviour that is independent of the vertical mesh size; this is an important property for transport in shallow water. Another characteristic of this hopscotch-type splitting is that it allows for an easy application of domain decomposition techniques in the horizontal directions. Two choices for the splitting formula will be presented. The resulting methods have been applied to a large-scale test problem and the numerical results will be discussed. Furthermore, we show performance results obtained on a Cray C98/4256. As part of the project TRUST (Transport and Reactions Unified by Splitting Techniques), preliminary versions of the schemes are available for benchmarking." |
Beschreibung: | 19 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011039094 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 961105s1996 |||| 00||| engod | ||
035 | |a (OCoLC)36633710 | ||
035 | |a (DE-599)BVBBV011039094 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Sommeijer, Ben P. |d ca. 20. Jh. |e Verfasser |0 (DE-588)132820269 |4 aut | |
245 | 1 | 0 | |a Splitting methods for three-dimensional biochemical transport |c B. P. Sommeijer ; J. Kok |
264 | 1 | |a Amsterdam |c 1996 | |
300 | |a 19 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1996,7 | |
520 | 3 | |a Abstract: "Splitting methods for the time integration of three- dimensional transport-chemistry models offer interesting prospects: second- order accuracy can be combined with sufficient stability, and the amount of implicitness can be reduced to a manageable level. Furthermore, exploiting the parallelization and vectorization features of the algorithm, a realistic simulation with many species over long time intervals becomes feasible. As an alternative to the usual splitting functions, such as co- ordinate splitting or operator splitting, we discuss in this paper a splitting function that is of hopscotch type. Both for a second-order, symmetric spatial discretization (resulting in a three-point coupling in each direction), and for a third-order, upwind discretization (giving rise to a five-point coupling, in general), we define a particular variant of this hopscotch splitting. These splitting functions will be combined with an appropriate splitting formula, resulting in second-order (in time) splitting methods. A common feature of both hopscotch splitting functions is that we have only coupling in the vertical direction, resulting in a stability behaviour that is independent of the vertical mesh size; this is an important property for transport in shallow water. Another characteristic of this hopscotch-type splitting is that it allows for an easy application of domain decomposition techniques in the horizontal directions. Two choices for the splitting formula will be presented. The resulting methods have been applied to a large-scale test problem and the numerical results will be discussed. Furthermore, we show performance results obtained on a Cray C98/4256. As part of the project TRUST (Transport and Reactions Unified by Splitting Techniques), preliminary versions of the schemes are available for benchmarking." | |
650 | 7 | |a Diffusion (physique) - Modèles mathématiques |2 ram | |
650 | 7 | |a Problèmes aux valeurs initiales |2 ram | |
650 | 7 | |a Transport - Modèles mathématiques |2 ram | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Diffusion |x Mathematical models | |
650 | 4 | |a Initial value problems | |
650 | 4 | |a Splitting extrapolation method | |
700 | 1 | |a Kok, J. |e Verfasser |4 aut | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1996,7 |w (DE-604)BV010177152 |9 1996,7 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007391074 |
Datensatz im Suchindex
_version_ | 1804125527783505920 |
---|---|
any_adam_object | |
author | Sommeijer, Ben P. ca. 20. Jh Kok, J. |
author_GND | (DE-588)132820269 |
author_facet | Sommeijer, Ben P. ca. 20. Jh Kok, J. |
author_role | aut aut |
author_sort | Sommeijer, Ben P. ca. 20. Jh |
author_variant | b p s bp bps j k jk |
building | Verbundindex |
bvnumber | BV011039094 |
ctrlnum | (OCoLC)36633710 (DE-599)BVBBV011039094 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03207nam a2200373 cb4500</leader><controlfield tag="001">BV011039094</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961105s1996 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)36633710</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011039094</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sommeijer, Ben P.</subfield><subfield code="d">ca. 20. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132820269</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Splitting methods for three-dimensional biochemical transport</subfield><subfield code="c">B. P. Sommeijer ; J. Kok</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">19 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1996,7</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Splitting methods for the time integration of three- dimensional transport-chemistry models offer interesting prospects: second- order accuracy can be combined with sufficient stability, and the amount of implicitness can be reduced to a manageable level. Furthermore, exploiting the parallelization and vectorization features of the algorithm, a realistic simulation with many species over long time intervals becomes feasible. As an alternative to the usual splitting functions, such as co- ordinate splitting or operator splitting, we discuss in this paper a splitting function that is of hopscotch type. Both for a second-order, symmetric spatial discretization (resulting in a three-point coupling in each direction), and for a third-order, upwind discretization (giving rise to a five-point coupling, in general), we define a particular variant of this hopscotch splitting. These splitting functions will be combined with an appropriate splitting formula, resulting in second-order (in time) splitting methods. A common feature of both hopscotch splitting functions is that we have only coupling in the vertical direction, resulting in a stability behaviour that is independent of the vertical mesh size; this is an important property for transport in shallow water. Another characteristic of this hopscotch-type splitting is that it allows for an easy application of domain decomposition techniques in the horizontal directions. Two choices for the splitting formula will be presented. The resulting methods have been applied to a large-scale test problem and the numerical results will be discussed. Furthermore, we show performance results obtained on a Cray C98/4256. As part of the project TRUST (Transport and Reactions Unified by Splitting Techniques), preliminary versions of the schemes are available for benchmarking."</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Diffusion (physique) - Modèles mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Problèmes aux valeurs initiales</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transport - Modèles mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Splitting extrapolation method</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kok, J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1996,7</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1996,7</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007391074</subfield></datafield></record></collection> |
id | DE-604.BV011039094 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:02:59Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007391074 |
oclc_num | 36633710 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 19 S. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Sommeijer, Ben P. ca. 20. Jh. Verfasser (DE-588)132820269 aut Splitting methods for three-dimensional biochemical transport B. P. Sommeijer ; J. Kok Amsterdam 1996 19 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1996,7 Abstract: "Splitting methods for the time integration of three- dimensional transport-chemistry models offer interesting prospects: second- order accuracy can be combined with sufficient stability, and the amount of implicitness can be reduced to a manageable level. Furthermore, exploiting the parallelization and vectorization features of the algorithm, a realistic simulation with many species over long time intervals becomes feasible. As an alternative to the usual splitting functions, such as co- ordinate splitting or operator splitting, we discuss in this paper a splitting function that is of hopscotch type. Both for a second-order, symmetric spatial discretization (resulting in a three-point coupling in each direction), and for a third-order, upwind discretization (giving rise to a five-point coupling, in general), we define a particular variant of this hopscotch splitting. These splitting functions will be combined with an appropriate splitting formula, resulting in second-order (in time) splitting methods. A common feature of both hopscotch splitting functions is that we have only coupling in the vertical direction, resulting in a stability behaviour that is independent of the vertical mesh size; this is an important property for transport in shallow water. Another characteristic of this hopscotch-type splitting is that it allows for an easy application of domain decomposition techniques in the horizontal directions. Two choices for the splitting formula will be presented. The resulting methods have been applied to a large-scale test problem and the numerical results will be discussed. Furthermore, we show performance results obtained on a Cray C98/4256. As part of the project TRUST (Transport and Reactions Unified by Splitting Techniques), preliminary versions of the schemes are available for benchmarking." Diffusion (physique) - Modèles mathématiques ram Problèmes aux valeurs initiales ram Transport - Modèles mathématiques ram Mathematisches Modell Diffusion Mathematical models Initial value problems Splitting extrapolation method Kok, J. Verfasser aut Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1996,7 (DE-604)BV010177152 1996,7 |
spellingShingle | Sommeijer, Ben P. ca. 20. Jh Kok, J. Splitting methods for three-dimensional biochemical transport Diffusion (physique) - Modèles mathématiques ram Problèmes aux valeurs initiales ram Transport - Modèles mathématiques ram Mathematisches Modell Diffusion Mathematical models Initial value problems Splitting extrapolation method |
title | Splitting methods for three-dimensional biochemical transport |
title_auth | Splitting methods for three-dimensional biochemical transport |
title_exact_search | Splitting methods for three-dimensional biochemical transport |
title_full | Splitting methods for three-dimensional biochemical transport B. P. Sommeijer ; J. Kok |
title_fullStr | Splitting methods for three-dimensional biochemical transport B. P. Sommeijer ; J. Kok |
title_full_unstemmed | Splitting methods for three-dimensional biochemical transport B. P. Sommeijer ; J. Kok |
title_short | Splitting methods for three-dimensional biochemical transport |
title_sort | splitting methods for three dimensional biochemical transport |
topic | Diffusion (physique) - Modèles mathématiques ram Problèmes aux valeurs initiales ram Transport - Modèles mathématiques ram Mathematisches Modell Diffusion Mathematical models Initial value problems Splitting extrapolation method |
topic_facet | Diffusion (physique) - Modèles mathématiques Problèmes aux valeurs initiales Transport - Modèles mathématiques Mathematisches Modell Diffusion Mathematical models Initial value problems Splitting extrapolation method |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT sommeijerbenp splittingmethodsforthreedimensionalbiochemicaltransport AT kokj splittingmethodsforthreedimensionalbiochemicaltransport |