Explicit Runge Kutta methods for parabolic partial differential equations:
Abstract: "Numerical methods for parabolic PDEs have been studied for many years. A great deal of the research focuses on the stability problem in the time integration of the systems of ODEs which result from the spatial discretization. These systems often are stiff and highly expensive to solv...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1996
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1996,2 |
Schlagworte: | |
Zusammenfassung: | Abstract: "Numerical methods for parabolic PDEs have been studied for many years. A great deal of the research focuses on the stability problem in the time integration of the systems of ODEs which result from the spatial discretization. These systems often are stiff and highly expensive to solve due to a huge number of components, in particular for multi-space dimensional problems. The combination of stiffness and problem size has led to an interesting variety of special purpose time integration methods. In this paper we review such a class of methods, viz. explicit Runge-Kutta methods possessing extended real stability intervals." |
Beschreibung: | 25 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011039000 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 961105s1996 |||| 00||| engod | ||
035 | |a (OCoLC)35799537 | ||
035 | |a (DE-599)BVBBV011039000 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Verwer, Jan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Explicit Runge Kutta methods for parabolic partial differential equations |c J. G. Verwer |
264 | 1 | |a Amsterdam |c 1996 | |
300 | |a 25 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1996,2 | |
520 | 3 | |a Abstract: "Numerical methods for parabolic PDEs have been studied for many years. A great deal of the research focuses on the stability problem in the time integration of the systems of ODEs which result from the spatial discretization. These systems often are stiff and highly expensive to solve due to a huge number of components, in particular for multi-space dimensional problems. The combination of stiffness and problem size has led to an interesting variety of special purpose time integration methods. In this paper we review such a class of methods, viz. explicit Runge-Kutta methods possessing extended real stability intervals." | |
650 | 4 | |a Differential equations, Parabolic | |
650 | 4 | |a Runge-Kutta formulas | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1996,2 |w (DE-604)BV010177152 |9 1996,2 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007390995 |
Datensatz im Suchindex
_version_ | 1804125527673405440 |
---|---|
any_adam_object | |
author | Verwer, Jan |
author_facet | Verwer, Jan |
author_role | aut |
author_sort | Verwer, Jan |
author_variant | j v jv |
building | Verbundindex |
bvnumber | BV011039000 |
ctrlnum | (OCoLC)35799537 (DE-599)BVBBV011039000 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01660nam a2200301 cb4500</leader><controlfield tag="001">BV011039000</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961105s1996 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)35799537</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011039000</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Verwer, Jan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Explicit Runge Kutta methods for parabolic partial differential equations</subfield><subfield code="c">J. G. Verwer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">25 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1996,2</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Numerical methods for parabolic PDEs have been studied for many years. A great deal of the research focuses on the stability problem in the time integration of the systems of ODEs which result from the spatial discretization. These systems often are stiff and highly expensive to solve due to a huge number of components, in particular for multi-space dimensional problems. The combination of stiffness and problem size has led to an interesting variety of special purpose time integration methods. In this paper we review such a class of methods, viz. explicit Runge-Kutta methods possessing extended real stability intervals."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Parabolic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta formulas</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1996,2</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1996,2</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007390995</subfield></datafield></record></collection> |
id | DE-604.BV011039000 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:02:59Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007390995 |
oclc_num | 35799537 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 25 S. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Verwer, Jan Verfasser aut Explicit Runge Kutta methods for parabolic partial differential equations J. G. Verwer Amsterdam 1996 25 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1996,2 Abstract: "Numerical methods for parabolic PDEs have been studied for many years. A great deal of the research focuses on the stability problem in the time integration of the systems of ODEs which result from the spatial discretization. These systems often are stiff and highly expensive to solve due to a huge number of components, in particular for multi-space dimensional problems. The combination of stiffness and problem size has led to an interesting variety of special purpose time integration methods. In this paper we review such a class of methods, viz. explicit Runge-Kutta methods possessing extended real stability intervals." Differential equations, Parabolic Runge-Kutta formulas Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1996,2 (DE-604)BV010177152 1996,2 |
spellingShingle | Verwer, Jan Explicit Runge Kutta methods for parabolic partial differential equations Differential equations, Parabolic Runge-Kutta formulas |
title | Explicit Runge Kutta methods for parabolic partial differential equations |
title_auth | Explicit Runge Kutta methods for parabolic partial differential equations |
title_exact_search | Explicit Runge Kutta methods for parabolic partial differential equations |
title_full | Explicit Runge Kutta methods for parabolic partial differential equations J. G. Verwer |
title_fullStr | Explicit Runge Kutta methods for parabolic partial differential equations J. G. Verwer |
title_full_unstemmed | Explicit Runge Kutta methods for parabolic partial differential equations J. G. Verwer |
title_short | Explicit Runge Kutta methods for parabolic partial differential equations |
title_sort | explicit runge kutta methods for parabolic partial differential equations |
topic | Differential equations, Parabolic Runge-Kutta formulas |
topic_facet | Differential equations, Parabolic Runge-Kutta formulas |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT verwerjan explicitrungekuttamethodsforparabolicpartialdifferentialequations |