Classical and cascadic multigrid: a methodical comparison
Abstract: "Using the full multigrid method without any coarse grid correction steps but with an a posteriori control of the number of smoothing iterations was shown by Bornemann and Deuflhard [2] to be an optimal iteration method with respect to the energy norm. They named this new kind of mult...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
1996
|
Schriftenreihe: | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin
1996,25 |
Schlagworte: | |
Zusammenfassung: | Abstract: "Using the full multigrid method without any coarse grid correction steps but with an a posteriori control of the number of smoothing iterations was shown by Bornemann and Deuflhard [2] to be an optimal iteration method with respect to the energy norm. They named this new kind of multigrid iteration the cascadic multigrid method. However, numerical examples with linear finite elements raised serious doubts whether the cascadic multigrid method can be made optimal with respect to the L²-norm. In this paper we prove that the cascadic multigrid method cannot be optimal for linear finite elements and show that the case might be different for higher order elements. We present a careful analysis of the two grid variant of the cascadic multigrid method providing a setting where one can understand the methodical difference between the cascadic multigrid method and the classical multigrid V-cycle almost immediately. As a rule of thumb we get that whenever the cascadic multigrid works the classical multigrid will work too but not vice versa." |
Beschreibung: | 10 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011030686 | ||
003 | DE-604 | ||
005 | 20031002 | ||
007 | t| | ||
008 | 961030s1996 xx |||| 00||| eng d | ||
035 | |a (OCoLC)37020132 | ||
035 | |a (DE-599)BVBBV011030686 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
100 | 1 | |a Bornemann, Folkmar |d 1967- |e Verfasser |0 (DE-588)120096269 |4 aut | |
245 | 1 | 0 | |a Classical and cascadic multigrid |b a methodical comparison |c Folkmar A. Bornemann ; Rolf Krause |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 1996 | |
300 | |a 10 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |v 1996,25 | |
520 | 3 | |a Abstract: "Using the full multigrid method without any coarse grid correction steps but with an a posteriori control of the number of smoothing iterations was shown by Bornemann and Deuflhard [2] to be an optimal iteration method with respect to the energy norm. They named this new kind of multigrid iteration the cascadic multigrid method. However, numerical examples with linear finite elements raised serious doubts whether the cascadic multigrid method can be made optimal with respect to the L²-norm. In this paper we prove that the cascadic multigrid method cannot be optimal for linear finite elements and show that the case might be different for higher order elements. We present a careful analysis of the two grid variant of the cascadic multigrid method providing a setting where one can understand the methodical difference between the cascadic multigrid method and the classical multigrid V-cycle almost immediately. As a rule of thumb we get that whenever the cascadic multigrid works the classical multigrid will work too but not vice versa." | |
650 | 4 | |a Finite element method | |
650 | 4 | |a Multigrid methods (Numerical analysis) | |
700 | 1 | |a Krause, Rolf |e Verfasser |4 aut | |
810 | 2 | |a Konrad-Zuse-Zentrum für Informationstechnik Berlin |t Preprint SC |v 1996,25 |w (DE-604)BV004801715 |9 1996,25 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-007386195 |
Datensatz im Suchindex
_version_ | 1820882503471202304 |
---|---|
adam_text | |
any_adam_object | |
author | Bornemann, Folkmar 1967- Krause, Rolf |
author_GND | (DE-588)120096269 |
author_facet | Bornemann, Folkmar 1967- Krause, Rolf |
author_role | aut aut |
author_sort | Bornemann, Folkmar 1967- |
author_variant | f b fb r k rk |
building | Verbundindex |
bvnumber | BV011030686 |
classification_rvk | SS 4777 |
ctrlnum | (OCoLC)37020132 (DE-599)BVBBV011030686 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV011030686</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031002</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">961030s1996 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)37020132</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011030686</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bornemann, Folkmar</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120096269</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical and cascadic multigrid</subfield><subfield code="b">a methodical comparison</subfield><subfield code="c">Folkmar A. Bornemann ; Rolf Krause</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="v">1996,25</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Using the full multigrid method without any coarse grid correction steps but with an a posteriori control of the number of smoothing iterations was shown by Bornemann and Deuflhard [2] to be an optimal iteration method with respect to the energy norm. They named this new kind of multigrid iteration the cascadic multigrid method. However, numerical examples with linear finite elements raised serious doubts whether the cascadic multigrid method can be made optimal with respect to the L²-norm. In this paper we prove that the cascadic multigrid method cannot be optimal for linear finite elements and show that the case might be different for higher order elements. We present a careful analysis of the two grid variant of the cascadic multigrid method providing a setting where one can understand the methodical difference between the cascadic multigrid method and the classical multigrid V-cycle almost immediately. As a rule of thumb we get that whenever the cascadic multigrid works the classical multigrid will work too but not vice versa."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multigrid methods (Numerical analysis)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krause, Rolf</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="t">Preprint SC</subfield><subfield code="v">1996,25</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1996,25</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007386195</subfield></datafield></record></collection> |
id | DE-604.BV011030686 |
illustrated | Not Illustrated |
indexdate | 2025-01-10T17:07:56Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007386195 |
oclc_num | 37020132 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 10 S. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series2 | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |
spelling | Bornemann, Folkmar 1967- Verfasser (DE-588)120096269 aut Classical and cascadic multigrid a methodical comparison Folkmar A. Bornemann ; Rolf Krause Berlin Konrad-Zuse-Zentrum für Informationstechnik 1996 10 S. txt rdacontent n rdamedia nc rdacarrier Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin 1996,25 Abstract: "Using the full multigrid method without any coarse grid correction steps but with an a posteriori control of the number of smoothing iterations was shown by Bornemann and Deuflhard [2] to be an optimal iteration method with respect to the energy norm. They named this new kind of multigrid iteration the cascadic multigrid method. However, numerical examples with linear finite elements raised serious doubts whether the cascadic multigrid method can be made optimal with respect to the L²-norm. In this paper we prove that the cascadic multigrid method cannot be optimal for linear finite elements and show that the case might be different for higher order elements. We present a careful analysis of the two grid variant of the cascadic multigrid method providing a setting where one can understand the methodical difference between the cascadic multigrid method and the classical multigrid V-cycle almost immediately. As a rule of thumb we get that whenever the cascadic multigrid works the classical multigrid will work too but not vice versa." Finite element method Multigrid methods (Numerical analysis) Krause, Rolf Verfasser aut Konrad-Zuse-Zentrum für Informationstechnik Berlin Preprint SC 1996,25 (DE-604)BV004801715 1996,25 |
spellingShingle | Bornemann, Folkmar 1967- Krause, Rolf Classical and cascadic multigrid a methodical comparison Finite element method Multigrid methods (Numerical analysis) |
title | Classical and cascadic multigrid a methodical comparison |
title_auth | Classical and cascadic multigrid a methodical comparison |
title_exact_search | Classical and cascadic multigrid a methodical comparison |
title_full | Classical and cascadic multigrid a methodical comparison Folkmar A. Bornemann ; Rolf Krause |
title_fullStr | Classical and cascadic multigrid a methodical comparison Folkmar A. Bornemann ; Rolf Krause |
title_full_unstemmed | Classical and cascadic multigrid a methodical comparison Folkmar A. Bornemann ; Rolf Krause |
title_short | Classical and cascadic multigrid |
title_sort | classical and cascadic multigrid a methodical comparison |
title_sub | a methodical comparison |
topic | Finite element method Multigrid methods (Numerical analysis) |
topic_facet | Finite element method Multigrid methods (Numerical analysis) |
volume_link | (DE-604)BV004801715 |
work_keys_str_mv | AT bornemannfolkmar classicalandcascadicmultigridamethodicalcomparison AT krauserolf classicalandcascadicmultigridamethodicalcomparison |