Foundations of electroheat: a unified approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester [u.a.]
Wiley
1996
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXVII, 500 S. graph. Darst. |
ISBN: | 0471956449 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV010999717 | ||
003 | DE-604 | ||
005 | 19970109 | ||
007 | t | ||
008 | 961015s1996 d||| |||| 00||| eng d | ||
020 | |a 0471956449 |9 0-471-95644-9 | ||
035 | |a (OCoLC)33207846 | ||
035 | |a (DE-599)BVBBV010999717 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-703 | ||
050 | 0 | |a TK4601 | |
082 | 0 | |a 697/.045 |2 20 | |
084 | |a ZN 8900 |0 (DE-625)157648: |2 rvk | ||
084 | |a ELT 940f |2 stub | ||
100 | 1 | |a Metaxas, A. C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Foundations of electroheat |b a unified approach |c A. C. Metaxas |
264 | 1 | |a Chichester [u.a.] |b Wiley |c 1996 | |
300 | |a XXVII, 500 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Electric heating | |
650 | 0 | 7 | |a Elektrowärmetechnik |0 (DE-588)4200158-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektrowärmetechnik |0 (DE-588)4200158-4 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007363869&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007363869 |
Datensatz im Suchindex
_version_ | 1804125490432180224 |
---|---|
adam_text | FOUNDATIONS OF ELECTROHEAT A UNIFIED APPROACH A C METAXAS FELLOW OF ST
JOHN S COLLEGE UNIVERSITY OF CAMBRIDGE, UK JOHN WILEY & SONS CHICHESTER
* NEW YORK * BRISBANE * TORONTO * SINGAPORE CONTENTS PREFACE XIX LIST OF
SYMBOLS XXI 1 INTRODUCTION 1 1.1 ELECTROHEAT AND ELECTRICITY UTILISATION
1 1.2 UNIFICATION 3 1.2.1 ELECTROMAGNETIC HEATING 3 1.2.2 THE IONISED
STATE 4 1.2.3 HEAT AND MASS TRANSFER 4 1.3 OTHER CHAPTERS 5 1.4
INDUSTRIAL APPLICATIONS 5 1.5 EXISTING PUBIICATIONS ON ELECTROHEAT 5 1.6
NEW MATERIALS 6 1.7 ELECTROHEAT * A MULTIDISCIPLINARY ACTIVITY 6 1.8
REFERENCES 8 FURTHER READING 9 2 MATERIALS AND THEIR PROPERTIES 11 2.1
2.2 2.3 2.4 2.5 2.6 2.7 INTRODUCTION CONDUCTIVE AND DISPLACEMENT CURRENT
DENSITY 2.2.1 CLASSICAL APPROACH 2.2.2 COMPLEX PERMITTIVITY 2.2.3
UNIFIED APPROACH FOR A CONDUCTIVE MEDIUM EQUIVALENT CIRCUIT
REPRESENTATION OF A GENERIC MATERIAL CONDUCTON LOSS RELAXATION LOSS IN
DIELECTRICS 2.5.1 DIPOLAR LOSS MECHANISM 2.5.2 INTERPRETATION OF THE
DIPOLAR RELAXATION 2.5.3 FORM OF DIELECTRIC PROPERTIES 2.5.4 THERMAL
RUNAWAY 2.5.5 CATALYSTS AND AGENTS 2.5.6 ELECTRICAL CIRCUITS FOR
DIELECTRICS MAGNETIC MATERIALS MODES OF HEAT TRANSFER 2.7.1 CONDUCTON 11
11 11 12 13 15 16 19 19 21 22 26 27 28 30 31 31 VIII CONTENTS 2.7.2
CONVECTION 33 2.7.3 RADIATION 36 2.8 SPECIFIC HEAT 36 2.9 PROBLEMS 37
2.10 REFERENCES 38 3 ELECTROMAGNETIC HEATING AND MELTING 41 3.1
INTRODUCTION 41 3.2 WAVE AND DIFFUSION EQUATIONS COMBINED 41 3.3 POWER
DISSIPATION 44 3.4 HEATING OF SLABS 44 3.4.1 SEMI-INFINITE DIELECTRIC
SLAB 44 3.4.1.1 ELECTRIC FIELD DISTRIBUTION 44 3.4.1.2 PENETRATION
DEPTHS 45 3.4.2 FINITE DIELECTRIC SLAB 4G 3.4.3 SEMI-INFINITE METALLIC
SLAB 50 3.4.3.1 MAGNETIC FIELD DISTRIBUTION 50 3.4.3.2 SKIN OR MAGNETIC
FIELD PENETRATION DEPTH 51 3.4.3.3 CURRENT DENSITY 52 3.4.3.4 POWER
DISSIPATION 52 3.4.4 INDUCTION HEATING OF A FINITE METALLIC SLAB 52
3.4.4.1 MAGNETIC FIELD AND FLUX 52 3.4.4.2 CURRENT DENSITY DISTRIBUTION
54 3.4.4.3 POWER DISSIPATION 54 3.4.4.4 INTEGRATED RESISTIVITY 56
3.4.4.5 CURIE TEMPERATURE 58 3.4.4.6 NON-IINEAR BEHAVIOUR 58 3.4.5
FINITE METALLIC SLAB HEATED DIRECTLY 58 3.4.5.1 CURRENT DENSITY 58
3.4.5.2 SLAB RESISTANCE 59 3.4.5.3 POWER DISSIPATION 60 3.4.6 RADIO
FREQUENCY HEATING OF A FINITE DIELECTRIC SLAB 62 3.5 HEATING OF SOLID
BILLETS 65 3.5.1 HEATING OF A SOLID BILLET IN AN AXIAL ELECTRIC FIELD 66
3.5.1.1 GOVERNING EQUATIONS 66 3.5.1.2 HEATING OF A LOW LOSS DIELECTRIC
BILLET 67 3.5.1.3 HEATING OF A METALLIC BILLET 68 3.5.2 HEATING OF A
SOLID BILLET IN AN AXIAL MAGNETIC FIELD 68 3.6 INDUCTION MELTING IN A
CORELESS FURNACE 70 3.6.1 INTRODUCTION 70 3.6.2 THEORETICAL ANALYSIS 70
3.6.3 STIRRING FORCE DENSITY 71 3.6.4 VECTOR POTENTIAL ANALYSIS 73 3.7
ELECTROMAGNETIC PUMPING OF LIQUID METALS 75 3.7.1 THE INDUCTION PUMP 76
3.7.2 THE CONDUCTION PUMP 79 3.8 PROBLEMS 79 3.9 REFERENCES 84 4
APPLICATORS AND SOURCES FOR ELECTROMAGNETIC HEATING 85 4.1 INTRODUCTION
85 4.2 APPLICATORS FOR ELECTROMAGNETIC HEATING 85 CONTENTS IX 4.2.1
CONDUCTIVE (OHMIC) OR DIRECT RESISTANCE HEATING 85 4.2.2 INDUCTION
HEATING 88 4.2.2.1 CONVENTIONAL INDUCTOR DESIGN 88 4.2.2.2 MULTILAYER
COIL 91 4.2.2.3 TRANSVERSE FLUX 92 4.2.2.4 OTHER COIL CONFIGURATIONS 93
4.2.3 RADIO FREQUENCY APPLICATORS 94 4.2.3.1 THROUGHFIELD APPLICATOR 94
4.2.3.2 STRAYFIELD OR FRINGEFIELD APPLICATOR 97 4.2.3.3 STAGGERED
THROUGHFIELD APPLICATOR 98 4.2.3.4 PLASTICS WEIDER 98 4.2.3.5
MISCELLANEOUS APPLICATOR STRUCTURES 98 4.2.3.6 STANDING WAVES 99 4.2.4
MICROWAVE APPLICATORS 101 4.2.4.1 TRAVELLING WAVE APPLICATOR 102 (A)
AXIAL APPLICATOR 103 (B) MEANDER APPLICATOR 103 4.2.4.2 SINGLE MODE
RESONANT APPLICATORS 105 (A) TEION RECTANGULAR WAVEGUIDE APPLICATOR 105
(B) CYLINDRICAL APPLICATORS 105 (C) HIGHER ORDER MODE RESONANT
APPLICATORS 108 4.2.4.3 MULTIMODE APPLICATOR 109 4.2.4.4 HOERN APPLICATOR
110 4.2.4.5 MISCELLANEOUS MICROWAVE APPLICATORS 111 4.2.4.6 SWEPT
FREQUENCY APPLICATORS 111 POWER SOURCES FOR ELECTROMAGNETIC HEATING 111
4.3.1 THYRISTORS 112 4.3.1.1 A.C. VOLTAGE REGULATORS 112 4.3.1.2
FREQUENCY CONVERTERS 114 4.3.2 MAGNETIC MULTIPLIERS 116 4.3.3 ROTARY
CONVERTERS 116 4.3.4 THERMIONIC TUBES 118 4.3.4.1 CLASS C OPERATION 119
4.3.4.2 WORKING PARAMETERS UNDER CLASS C CONDITIONS 121 (A) CONSTANT
GRID BIAS 122 (B) VARYING GRID BIAS 127 4.3.4.3 TRANSMITTER POWER
GENERATION 130 4.3.5 MICROWAVE POWER GENERATION 131 4.3.5.1 MAGNETRON
TUBE 131 4.3.5.2 MAGNETRON POWER SUPPLIES 132 4.3.5.3 MAGNETRON SPECTRA
134 4.3.6 RADIO FREQUENCY SOLID STATE POWER SOURCES 134 OPTIMISATION AND
COUPLING 136 4.4.1 ISOLATED APPLICATORS 136 4.4.2 MEASUREMENTS ON
COUPIED SOURCE/APPLICATOR CIRCUITS 137 4.4.3 COMPUTER MODELLING OF
COUPIED SYSTEMS AND PERFORMANCE 139 4.4.4 RIEKE DIAGRAM 142 4.4.5 ARE
DETECTION AND PROTECTION IN RADIO FREQUENCY 143 SYSTEMS 4.4.5.1
INTRODUCTION 143 4.4.5.2 FREQUENCY SHIFT DURING SIMULATED ARCING 144
4.4.5.3 PRE-ARC FREQUENCY SHIFT DETECTOR/SUPPRESSOR 145 X CONTENTS 4.5
PROBLEMS 146 4.6 REFERENCES 151 5 THE IONISED STATE 155 5.1 INTRODUCTION
155 5.2 HIGH POWER LASERS-THEORETICA! ASPECTS 157 5.2.1 STIMULATED
EMISSION 157 5.2.2 OPTICAL FEEDBACK 159 5.2.3 RATE EQUATIONS 161 5.2.4
LINESHAPE FUNCTION AND AXIAL MODES 162 5.2.5 GAUSSIAN BEAMS 163 5.2.5.1
ELECTRIC FIELD DISTRIBUTION IN A TEMOO GAUSSIAN BEAM 164 5.2.5.2 BEAM
DIVERGENCE 165 5.2.5.3 BEAM POWER 166 5.2.5.4 BEAM FOCUSING 168 5.2.5.5
BEAM COLUEMATION 169 5.3 INDUSTRIAL LASER SYSTEMS 169 5.3.1 THE C0 2
LASER 169 5.3.2 SOLID INSULATOR ND:YAG LASER 171 5.3.3 RUBY LASER 172
5.3.4 Q-SWITCHING 172 5.3.5 OTHER INDUSTRIAL LASERS 172 5.3.6 NEW
GENERATION OF ROBOTIC LASERS 173 5.4 ARES 174 5.4.1 PLASMA TORCH 174
5.4.1.1 STABILITY CRITERION 174 5.4.1.2 COMPARISON BETWEEN GLOW AND ARC
PARAMETERS 176 5.4.1.3 INDUSTRIAL PTASMA ARC TORCHES 178 5.4.1.4 PLASMA
ARC FURNACES 179 5.4.1.5 SUPERIMPOSED TORCH SYSTEMS 180 5.4.1.6
ALTERNATING CURRENT ARCS 181 5.4.2 A.C. ARC FURNACE 182 5.4.2.1
INTRODUCTION 182 5.4.2.2 CURRENT LOCUS AND POWER DIAGRAM 183 5.4.2.3
POWER CONTROL 188 5.4.3 D.C, ARC FURNACE 191 5.5 GLOW DISCHARGE AND
PLASMA CHEMISTRY SYSTEMS 191 5.5.1 MISCELLANEOUS APPLICATIONS OF PLASMAS
191 5.5.2 PLASMA ASSISTED ETCHING 193 5.5.3 CARBURISING AND NITRIDING
196 5.6 ELECTRON BEAMS 198 5.6.1 INTRODUCTION 198 5.6.2 TECHNICAL
DETAILS 199 5.6.3 PROCESSING OF WIDE WEBS 202 5.7 ION BEAM PROCESSING
203 5.8 RADIO FREQUENCY AND MICROWAVE POWER IN JET FUSION REACTORS 206
5.8.1 ION CYCLOTRON RESONANCE HEATING 206 5.8.2 LOWER HYBRID CURRENT
DRIVE 206 CONTENTS XI 5.9 PROBLEMS 207 5.10 REFERENCES 210 6 OTHER
APPLICATIONS OF ELECTROTECHNOLOGY 213 6.1 INTRODUCTION 6.2 HEAT RECOVERY
THROUGH INDUSTRIAL HEAT PUMPS 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7
6.2.8 6.2.9 INTRODUCTION TYPE OF HEAT PUMPS VAPOUR COMPRESSION CYCLE
COEFFICIENT OF PERFORMANCE AND EFFICIENCY PERFORMANCE OF A HEAT PUMP
DRYER 6.2.5.1 AIR FLOW ANALYSIS 6.2.5.2 HEAT LOADS 6.2.5.3 DRYING RATES
DRYING WITH A HEAT PUMP DRYING EFFICIENCY SPECIFIC MOISTURE EXTRACTION
RATE VAPOUR RECOMPRESSION 6.2.9.1 INTRODUCTION 6.2.9.2 MECHANICAL VAPOUR
RECOMPRESSION 6.2.9.3 INDUSTRIAL EVAPORATORS 6.2.9.4 DISTILLATION
6.2.9.5 THERMAL VAPOUR RECOMPRESSION 6.3 INFRA-RED HEATING 6.3.1 6.3.2
6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 INTRODUCTION MONOCHROMATIC AND TOTAL
EMISSIVE POWER ABSORPTIVITY, REFLECTIVITY AND TRANSMISSIVITY GREY BODIES
AND EMISSIVITY ABSORPTION OF INFRA-RED RADIATION ENERGY EXCHANGE BETWEEN
SURFACES 6.3.6.1 VIEWFACTOR 6.3.6.2 IRRADIATION AND RADIOSITY-EQUIVALENT
ELECTRICAL CIRCUITS 6.3.6.3 SIMPLE GEOMETRIES 6.3.6.4 MULTIPLE SURFACES
6.3.6.5 ANALYTICAL SOLUTION (A) TUBULAER HEATER (B) RECTANGULAR FURNACE
6.3.6.6 TEMPERATURE DISTRIBUTION IN INDUSTRIAL FURNACES PRACTICA!
SYSTEMS 6.3.7.1 EMITTER CHARACTERISTICS 6.3.7.2 CONTROL OF INFRA-RED
EMITTERS 6.3.7.3 EFFICIENCY OF ELECTRICAL INFRA-RED EMITTERS 6.3.7.4
APPLICATOR SYSTEMS 6.4 AIR KNIFE TECHNOLOGY 6.4.1 6.4.2 6.4.3
INTRODUCTION PRINCIPTE OF OPERATION PRACTICAL SYSTEMS 6.5 INDUCTION
APPLICATIONS 6.5.1 6.5.2 INDUCTION DRYER INDUCTION HEATED MIXER 6.6
ELECTROCHEMICAL PROCESSES 6.6.1 METAL RECOVERY THROUGH ELECTROLYSIS 213
213 213 214 215 216 218 218 219 221 222 223 224 224 224 225 225 226 228
229 229 229 232 233 233 234 234 238 239 240 252 252 253 255 256 256 257
258 259 261 261 261 263 264 264 265 266 266 XII CONTENTS 6.6.2 THE
DISHED ELECTRODE MEMBRANE (DEM) CELL 267 6.6.3 ELECTROFLOTATION 268
6.6.4 ETCHANT REGENERATION CELL 269 6.7 ULTRA-VIOLET ENERGY 269 6.7.1
CURING OF COATINGS 269 6.7.2 LAMPS FOR UV CURING 270 6.7.3 EQUIPMENT FOR
UV PROCESSING 271 6.8 VENTURI AERATOR 271 6.9 MEMBRANES 272 6.10 OVENS
AND FURNACES 272 6.11 PROBLEMS 274 6.12 REFERENCES 277 7 HEAT AND MASS
TRANSFER 279 7.1 INTRODUCTION 279 7.2 CONSERVATION OF ENERGY 279 7.2.1
INTRODUCTION 279 7.2.2 CONDUCTIVE OR OHMIC HEATING 280 (A) RIGOROUS
APPROACH 282 (B) SIMPLIFIED VERSION 282 7.2.3 INDUCTION HEATING 283
7.2.4 DIELECTRIC HEATING 284 (A) STATIC LOAD IN A UNIFORM ELECTRIC FIELD
284 (B) CONTINUOUS SYSTEM FOR A WEB TYPE MATERIAL 285 (C) NON-UNIFORM
ELECTRIC FIELD 286 7.2.5 LASER PROCESSING 288 7.2.6 INFRA-RED PROCESSING
OF A WEB 290 7.3 TEMPERATURE DISTRIBUTION IN HOMOGENEOUS MATERIALS 291
7.3.1 INTRODUCTION 291 7.3.2 TEMPERATURE DISTRIBUTION 292 7.3.2.1 STAB
HEATED BY CONDUCTION OR INDUCTION 293 (A) CONSTANT POWER DENSITY 293 (B)
VARIABLE POWER DENSITY 295 7.3.2.2 OHMIC HEATING 299 7.3.2.3 DIELECTRIC
HEATING OF A SLAB 300 7.3.2.4 COMBINED DIELECTRIC AND PLATTEN HEATING
302 7.3.2.5 THERMAL RUNWAY IN MICROWAVE HEATING 304 7.3.2.6 LASER
PROCESSING 305 (A) ONE DIMENSIONAL CASE 305 (B) THREE DIMENSIONAL CASE
306 7.3.2.7 INFRA-RED HEATING 309 7.4 HEAT AND MASS TRANSFER IN ELECTRIC
DRYING 311 7.4.1 INTRODUCTION 311 7.4.2 CONVENTIONAL DRYING 311 7.4.3
GENERALISED TRANSPORT EQUATION 312 7.4.4 HIGH FREQUENCY DRYING 315
7.4.4.1 PHYSICAL MECHANISMS 315 7.4.4.2 MOISTURE LEVELLING 317 7.4.4.3
RADIO FREQUENCY DRYING * THE COMPLETE PROCESS 319 7.4.4.4 INITIAL
HEATING TIME 322 7.4.5 INFRA-RED DRYING 324 CONTENTS XIII 7.4.5.1
INTRODUCTION 324 7.4.5.2 END DRYING WITH INFRA-RED ENERGY 325 7.5
PROBLEMS 327 7.6 REFERENCES 330 8 COMPUTERS IN ELECTROHEAT 333 8.1
INTRODUCTION 8.2 EXPERT SYSTEMS 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5
INTRODUCTION ARCHITECTURE OF AN EXPERT SYSTEM 8.2.2.1 KNOWLEDGE
REPRESENTATION 8.2.2.2 INFERENCE ENGINE 8.2.2.3 SUBSYSTEMS AND
INTERFACES BUILDING AN EXPERT SYSTEM 8.2.3.1 STRUCTURE AND RULES
EXAMPLES OF EXPERT SYSTEMS IN ELECTRICITY UTILISATION 8.2.4.1 DRYING
PACKAGES (A) DRYEX (B) CAPDRY 8.2.4.2 EHEAT 8.2.4.3 EMMA 8.2.4.4 STELLA
8.2.4.5 VATHEAT 8.2.4.6 CLAIRE 8.2.4.7 PLASMA WELDING FAULT INQUISITOR
KNOWLEDGE SYSTEMATISATION AND IMS 8.3 NEURAL NETWORKS 8.3.1 8.3.2 8.3.3
8.3.4 BASIC NEURAL NETWORK A LEARNING ALGORITHM LEARNING METHODS 8.3.3.1
BACKPROP 8.3.3.2 CONSTANT WEIGHT CHANGE 8.3.3.3 MONITOR ERROR CHANGE
8.3.3.4 CRITICAL ANNEALING 8.3.3.5 AUTOPROP INDUSTRIAL EXAMPLES IN
ELECTROHEAT 8.3.4.1 GAS WELDING ARC PROCESSING 8.3.4.2 LASER WELDING 8.4
NUMERICAL TECHNIQUES 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 INTRODUCTION
FORMULATION OF THE PROBLEM HEAT GENERATION TERM SUMMARY OF THE VARIOUS
NUMERICAL TECHNIQUES 8,4.4.1 INTRODUCTION 8.4.4.2 INTEGRAL FORMULATION
8.4.4.3 FINITE DIFFERENCE TIME DOMAIN 8.4.4.4 METHOD OF LINES 8.4.4.5
TRANSMISSION LINE MATRIX 8.4.4.6 MONTE CARLO METHOD 8.4.4.7 FINITE
ELEMENT METHOD THE FINITE ELEMENT METHOD APPLIED TO MICROWAVE HEATING
8.4.5.1 FREQUENCY DOMAIN 333 333 333 334 334 335 335 336 336 337 338 338
338 338 338 338 338 339 339 339 340 340 341 343 343 343 344 344 344 345
345 346 346 346 347 348 349 349 350 350 351 351 352 352 353 353 XIV
CONTENTS 8.4.5.2 TIME DOMAIN 358 8.4.5.3 BOUNDARY CONDITIONS 359 8.4.5.4
NODAL VERSUS EDGE ELEMENTS 359 8.4.5.5 EXTERNAL CIRCUIT 359 8.4.5.6
TEMPERATURE DISTRIBUTION 360 8.4.5.7 SOLUTION OF THE MATRIX EQUATIONS
360 8.4.5.8 CODE VERIFICATION 360 8.5 REFERENCES 364 INDUSTRIAL
APPLICATIONS 371 9.1 INTRODUCTION 371 9.2 ELECTROMAGNETIC HEATING 371
9.2.1 CONDUCTION HEATING 371 372 374 374 374 375 375 9.2.2 INDUCTION
HEATING AND MELTING 376 376 378 378 379 379 380 380 380 380 381 382 383
383 385 385 385 387 388 388 389 9.2.3 RADIO FREQUENCY 390 390 (A)
TEXTILE DRYING 390 (B) POST-BAKING 392 (C) PAPER CONVERTING 392 (D)
PAPER AND BOARD MAKING 392 (E) RADIO FREQUENCY ENHANCEMENT OF 393
CONVENTIONAL HEAT TRANSFER 9.2.3.2 PLASTICS WELDING 394 9.2.3.3 WOOD
GLUING 394 9.2.3.4 THAWING OF FROZEN POULTRY 395 9.2.3.5 OTHER RADIO
FREQUENCY APPLICATIONS 395 9.2.3.6 50 Q RADIO FREQUENCY INDUSTRIAL
SYSTEMS 395 9.2.3.7 HEATING OF FUSION PLASMAS 396 9.2.1.1 9.2.1.2
9.2.1.3 9.2.1.4 9.2.1.5 9.2.1.6 GLASS MELTING STEAM AND HOT WATER
RAISING OHMIC HEATING FOR FOODSTUFFS PROCESSING OF SEWAGE PROCESSING OF
METALS MISCELLANEOUS APPLICATIONS INDUCTION HEATING AND MELTING 9.2.2.1
9.2.2.2 9.2.2.3 9.2.2.4 9.2.2.5 9.2.2.6 9.2.2.7 9.2.2.8 9.2.2.9
INTRODUCTION METAL FORMING (A) FORGING (B) ROLLING (C) EXTRUSION (D)
TUBE BENDING (E) SWAGING HEAT TREATMENT (A) SURFACE HARDENING (B)
TEMPERING AND ANNEALING (C) STRESS RELIEVING JOINING TRANSVERSE FLUX
HEATING OF STRIP OTHER APPLICATIONS OF INDUCTION HEATING INDUCTION
MELTING (A) CORELESS INDUCTION FURNACE (B) INDUCTION COLD CRUCIBLE
FURNACE (C) CHANNEL INDUCTION FURNACE LIQUID METAL PROCESSING HYBRID
SYSTEMS RADIO FREQUENCY 9.2.3.1 DRYING CONTENTS XV 9.2.4 9.2.5 9.2.6
MICROWAVE 9.2.4.1 FOOD TEMPERING 9.2.4.2 PRE-HEATING FOR RUBBER
VULCANISATION 9.2.4.3 DRYING (A) ATMOSPHERIC PRESSURE (B) VACUUM DRYING
9.2.4.4 BAKING AND COOKING 9.2,4.5 PASTEURISATION 9.2.4.6 STERILISATION
9.2.4.7 PUFFING 9.2.4.8 TIMBER MANUFACTURE 9.2.4.9 PROCESSING OF WASTES
9.2.4.10 POTENTIAL MICROWAVE APPLICATIONS CATERING WITH MICROWAVES RADIO
FREQUENCY VERSUS MICROWAVE SYSTEMS ARES, PLASMAS AND LASERS 9.3.1 9.3.2
9.3.3 9.3.4 9.3.5 9.3.6 INDUSTRIAL APPLICATIONS OF LASERS 9.3.1.1
WELDING 9.3.1.2 DRILLING 9.3.1.3 CUTTING 9.3.1.4 SURFACE TREATMENT
9.3.1.5 OTHER LASERS FOR INDUSTRY PLASMAS AND GLOW DISCHARGES 9.3.2.1
PLASMA CHEMISTRY 9.3.2.2 PLASMA NITRIDING AND CARBURISING PLASMA ARC
TORCHES 9.3.3.1 CUTTING 9.3.3.2 WELDING 9.3.3.3 SPRAYING 9.3.3.4 PLASMA
ARC FUMACES (A) TUNDISH HEATING (B) TREATMENT OF ARC FURNACE DUST (C)
PLATINUM GROUP METAL AND REFRACTORY METAL RECOVERY (D) HAZARDOUS WASTE
TREATMENT (E) OTHER PLASMA FURNACE APPLICATIONS ELECTRIC ARC FURNACE
CORONA DISCHARGE IONISING WET SCRUBBERS MISCELLANEOUS APPLICATIONS OF
ARCS HEAT PUMPS 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 INTRODUCTION TIMBER
DRYING PALIET DRYING DRYING OF MALTED BARLEY MISCELLANEOUS DRYING
APPLICATIONS USING HEAT PUMPS STEAM RECOMPRESSION INFRA-RED HEATING AND
DRYING APPLICATIONS 9.5.1 9.5.2 9.5.3 9.5.4 9.5.5 9.5.6 9.5.7 9.5,8
VEHICLE REFINISHING AND PAINT CURING CURING OF COATINGS CURING OF POWDER
COATINGS RUBBER BONDING OF FIRE HOSES CURING OF ADHESIVE BINDERS
SOLDERING CURING THE ADHESIVE IN ELECTRONIC DEVICES DRYING OF WATER
BASED COATINGS 396 396 397 398 398 399 400 401 401 402 402 403 404 405
405 406 406 407 408 408 410 410 410 410 410 412 412 412 412 413 413 413
414 414 414 415 415 416 416 416 417 417 418 418 419 420 421 422 423 424
424 425 425 425 CONTENTS 9.5.9 BATTERY PLATE DRYING 426 9.5.10 MOULD
DRYING 426 9.5.11 SCREEN PRINT DRYING 426 9.5.12 TEXTILE PROCESSING 426
9.5.13 MISCELLANEOUS APPLICATIONS OF INFRA-RED ENERGY 427 9.6 AIR KNIFE
TECHNOLOGY APPLICATIONS 427 9.6.1 FOOD INDUSTRY 427 9.6.2 ENGINEERING
INDUSTRY 428 9.6.3 TEXTILE INDUSTRY 428 9.7 ULTRA-VIOLET APPLICATIONS
428 9.7.1 CURING OF INKS AND COATINGS 429 9.7.1.1 LITHO PRINTING 429
9.7.1.2 SCREEN PRINTING 429 9.7.1.3 OVERPRINT VARNISHES 430 9.7.1.4
FURNITURE PRODUCTION 430 9.7.2 GAS CLEANING 430 9.7.3 PRODUCTION OF PURE
WATER 431 9.8 APPLICATIONS OF ELECTRON BEAMS 431 9.8.1 WELDING 431 9.8.2
PRINTING 432 9.8.2.1 INTRODUCTION 432 9.8.2.2 ELECTRON BEAM VERSUS OTHER
TECHNIQUES 433 9.8.2.3 CURING OF COATINGS 433 9.8.3 OTHER APPLICATIONS
434 9.9 MISCELLANEOUS APPLICATIONS OF ELECTRICITY 434 9.9.1 ELECTRIC
DESICCANT AIR DEHUMIDIFIER 434 9.9.2 EFFLUENT TREATMENT USING CHEMELEC
CELLS 435 9.9.3 VENTURI AERATOR 435 9.9.4 LOW THERMAL MASS (LTM) FURNACE
436 9.9.5 MEMBRANES 436 9.9.6 WASTE MANAGEMENT PROCESS 436 9.9.7 HOT
ORGANIC STRIPPING 437 9.9.8 PURE GAS GENERATORS 437 9.9.9 IMMERSION
HEATING OF NON-FERROUS MATERIAIS 438 9.9.10 PIPE HEATING 438 9.10
INDUSTRIAL CASE STUDIES 438 9.10.1 CASE STUDY I: ELECTROMAGNETIC DRYING
438 9.10.1.1 INTRODUCTION 438 9.10.1.2 THE PRESENT PAPER-MAKING LINE 439
9.10.1.3 DRYING OPTIONS 440 (A) ADDITIONAL STEAM CYLINDER BANK 440 (B)
USING A MICROWAVE OR RADIO FREQUENCY DRYER 441 (C) USING AN INFRA-RED
DRYER 441 9.10.1.4 SUMMARY OF DECISION MAKING 441 9.10.1.5 COST-BENEFIT
ANALYSIS 442 (A) SYSTEM DATA 442 (B) EXTRA PROFIT 442 (C) POWER
REQUIREMENT 442 (D) INTEREST CHARGES AND PAYBACK PERIOD 443 9.10.1.6
CONCLUDING COMMENTS 444 9.10.2 CASE STUDY II: MICROWAVE TEMPERING 445
9.10.3 CASE STUDY III: POST-BAKING OF FOODSTUFFS 445 9.10.4 CASE STUDY
IV: DRYING OF TEXTILES 446 CONTENTS XVII 9.10.5 CASE STUDY V: INDUCTION
MELTING 447 9.10.6 CASE STUDY VI: UV INK CURING 447 9.11 REFERENCES 447
APPENDICES A1 THE FUNCTIONS COTH(1 +J)X/8 AND 1 TANH(1 +J)B/S 2 AND
SIMUEAR FUNCTIONS 453 A2 THERMOPHYSICAL CONSTANTS OF A RAENGE OF MATERIALS
PROCESSED IN ELECTROHEAT APPLICATIONS 456 A3 PROPERTIES OF AIR 458 A4
DIELECTRIC PROPERTIES OF SELECTED MATERIALS PROCESSED AT HIGH
FREQUENCIES 459 A5 DATA FOR WATER AND STEAM 461 A6 BESSEL FUNCTIONS OF
THE FIRST AND SECOND KINDS 462 A7 GENERAL PHYSICAL CONSTANTS 463 A8
SPECIFIC HEATS OF SOME TYPICAL MATERIALS 464 A9 ANALYTICAL EXPRESSIONS
FOR O AND Q 2 IN INFRA-RED FURNACES 465 A10 EMISSIVITY OF A RAENGE OF
MATERIALS 474 A11 TEMPERATURE DISTRIBUTION IN A CYLINDRICAL BILLET 477
AUTHOR INDEX 479 SUBJECT INDEX 485
|
any_adam_object | 1 |
author | Metaxas, A. C. |
author_facet | Metaxas, A. C. |
author_role | aut |
author_sort | Metaxas, A. C. |
author_variant | a c m ac acm |
building | Verbundindex |
bvnumber | BV010999717 |
callnumber-first | T - Technology |
callnumber-label | TK4601 |
callnumber-raw | TK4601 |
callnumber-search | TK4601 |
callnumber-sort | TK 44601 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | ZN 8900 |
classification_tum | ELT 940f |
ctrlnum | (OCoLC)33207846 (DE-599)BVBBV010999717 |
dewey-full | 697/.045 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 697 - Heating, ventilating & air-conditioning |
dewey-raw | 697/.045 |
dewey-search | 697/.045 |
dewey-sort | 3697 245 |
dewey-tens | 690 - Construction of buildings |
discipline | Energietechnik, Energiewirtschaft Bauingenieurwesen Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01285nam a2200361 c 4500</leader><controlfield tag="001">BV010999717</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19970109 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961015s1996 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471956449</subfield><subfield code="9">0-471-95644-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)33207846</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010999717</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK4601</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">697/.045</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8900</subfield><subfield code="0">(DE-625)157648:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 940f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Metaxas, A. C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Foundations of electroheat</subfield><subfield code="b">a unified approach</subfield><subfield code="c">A. C. Metaxas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 500 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric heating</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrowärmetechnik</subfield><subfield code="0">(DE-588)4200158-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektrowärmetechnik</subfield><subfield code="0">(DE-588)4200158-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007363869&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007363869</subfield></datafield></record></collection> |
id | DE-604.BV010999717 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:02:23Z |
institution | BVB |
isbn | 0471956449 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007363869 |
oclc_num | 33207846 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-703 |
owner_facet | DE-91 DE-BY-TUM DE-703 |
physical | XXVII, 500 S. graph. Darst. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Wiley |
record_format | marc |
spelling | Metaxas, A. C. Verfasser aut Foundations of electroheat a unified approach A. C. Metaxas Chichester [u.a.] Wiley 1996 XXVII, 500 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Electric heating Elektrowärmetechnik (DE-588)4200158-4 gnd rswk-swf Elektrowärmetechnik (DE-588)4200158-4 s DE-604 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007363869&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Metaxas, A. C. Foundations of electroheat a unified approach Electric heating Elektrowärmetechnik (DE-588)4200158-4 gnd |
subject_GND | (DE-588)4200158-4 |
title | Foundations of electroheat a unified approach |
title_auth | Foundations of electroheat a unified approach |
title_exact_search | Foundations of electroheat a unified approach |
title_full | Foundations of electroheat a unified approach A. C. Metaxas |
title_fullStr | Foundations of electroheat a unified approach A. C. Metaxas |
title_full_unstemmed | Foundations of electroheat a unified approach A. C. Metaxas |
title_short | Foundations of electroheat |
title_sort | foundations of electroheat a unified approach |
title_sub | a unified approach |
topic | Electric heating Elektrowärmetechnik (DE-588)4200158-4 gnd |
topic_facet | Electric heating Elektrowärmetechnik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007363869&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT metaxasac foundationsofelectroheataunifiedapproach |