Laser enhanced ionization spectrometry:
Laser-enhanced ionization (LEI) is a type of optical spectrometry that employs photoexcitation to ionize atoms selectively. Over the past two decades, this method - originally known as the optogalvanic effect - has been the object of extensive worldwide research and the subject of numerous papers an...
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Wiley
1996
|
Schriftenreihe: | Chemical analysis
136 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | Laser-enhanced ionization (LEI) is a type of optical spectrometry that employs photoexcitation to ionize atoms selectively. Over the past two decades, this method - originally known as the optogalvanic effect - has been the object of extensive worldwide research and the subject of numerous papers and published articles. Until now, however, no single volume has presented this wealth of theory and data in a cohesive and accessible form Laser-Enhanced Ionization Spectrometry fills this gap in the literature. It synthesizes vast amounts of information previously available only through scattered research papers and covers every aspect of the technology. From underlying principles and theory to methodology and applications. This book examines the state of the art of LEI, compares it with other methods, and demonstrates how laser-enhanced collisional ionization is especially well suited to analytical atomic spectrometry The contributors to this collaborative effect - from Russia, Australia, Europe, and the United States - clarify terminology, explain the inner workings of LEI, and offer derivations for both idealized forms and realistic approximations. They also analyze the capabilities and limitations of this technique as an analytical method, including instrumentation, sources of noise, limits of detection, interferences, and applications |
Beschreibung: | XXI, 334 S. graph. Darst. |
ISBN: | 0471576840 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010992531 | ||
003 | DE-604 | ||
005 | 19970210 | ||
007 | t | ||
008 | 961009s1996 d||| |||| 00||| eng d | ||
020 | |a 0471576840 |9 0-471-57684-0 | ||
035 | |a (OCoLC)32923874 | ||
035 | |a (DE-599)BVBBV010992531 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-703 |a DE-83 | ||
050 | 0 | |a QD96.L3 | |
082 | 0 | |a 621.36/6 |2 20 | |
084 | |a UH 5710 |0 (DE-625)145690: |2 rvk | ||
084 | |a VG 8850 |0 (DE-625)147230:253 |2 rvk | ||
245 | 1 | 0 | |a Laser enhanced ionization spectrometry |c ed. by John C. Travis ... |
246 | 1 | 3 | |a Laser-enhanced ionization spectrometry |
264 | 1 | |a New York [u.a.] |b Wiley |c 1996 | |
300 | |a XXI, 334 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Chemical analysis |v 136 | |
490 | 0 | |a A Wiley-Interscience publication | |
520 | 3 | |a Laser-enhanced ionization (LEI) is a type of optical spectrometry that employs photoexcitation to ionize atoms selectively. Over the past two decades, this method - originally known as the optogalvanic effect - has been the object of extensive worldwide research and the subject of numerous papers and published articles. Until now, however, no single volume has presented this wealth of theory and data in a cohesive and accessible form | |
520 | |a Laser-Enhanced Ionization Spectrometry fills this gap in the literature. It synthesizes vast amounts of information previously available only through scattered research papers and covers every aspect of the technology. From underlying principles and theory to methodology and applications. This book examines the state of the art of LEI, compares it with other methods, and demonstrates how laser-enhanced collisional ionization is especially well suited to analytical atomic spectrometry | ||
520 | |a The contributors to this collaborative effect - from Russia, Australia, Europe, and the United States - clarify terminology, explain the inner workings of LEI, and offer derivations for both idealized forms and realistic approximations. They also analyze the capabilities and limitations of this technique as an analytical method, including instrumentation, sources of noise, limits of detection, interferences, and applications | ||
650 | 4 | |a Spectroscopie laser | |
650 | 4 | |a Laser spectroscopy | |
650 | 0 | 7 | |a Laserspektroskopie |0 (DE-588)4034620-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ionisation |0 (DE-588)4135379-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Laserspektroskopie |0 (DE-588)4034620-1 |D s |
689 | 0 | 1 | |a Ionisation |0 (DE-588)4135379-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Travis, John C. |e Sonstige |4 oth | |
830 | 0 | |a Chemical analysis |v 136 |w (DE-604)BV000008780 |9 136 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007357568&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007357568 |
Datensatz im Suchindex
_version_ | 1804125482124312576 |
---|---|
adam_text | CONTENTS
CONTRIBUTORS xiii
PREFACE xv
CUMULATIVE LISTING OF VOLUMES IN SERIES xvii
CHAPTER 1 FUNDAMENTAL MECHANISMS OF
LASER ENHANCED IONIZATION:
THE PRODUCTION OF IONS 1
Ove Axner and Halina Rubinsztein Dunlop
1.1. Introduction 1
1.2. Thermal Ionization 3
1.2.1. Thermal Equilibrium 3
1.2.2. Processes Responsible for Thermal
Ionization 5
1.2.3. The Thermal Ionization Rate of an Atom
in a Heat Bath 6
1.3. Laser Enhanced Ionization in the Rate
Equation Formalism 11
1.3.1. Representation of the Interaction
Between Atoms and Laser Light 11
1.3.2. A Three Level System Exposed to One or
Two Step Excitation 14
1.3.3. The Number of Excited Atoms 15
1.3.4. The Ionization Rate for One Step
Excitation and Its Relation to Thermal
Ionization 22
1.3.5. The Degree of Ionization for One and
Two Step Excitation 27
1.3.6. The LEI Enhancement: A Relation
Between the Two Step and One Step LEI
Signals 30
1.3.7. Pulsed vs. Continuous Wave Excitation 32
v
vi CONTENTS
1.4. Comparison Between Collisional Ionization and
Photoionization 41
1.5. The Ionization Efficiency of Excited Atoms in
Flames 46
1.6. The Most Sensitive Transition for One Step
LEI: Signal Strength vs. Principal Quantum
Number 51
1.7. The Number of Ions Produced vs. the Area of the
Laser Beam 56
1.8. Anomalous Contributions from Atoms Outside
the Interaction Region 60
1.8.1. Introduction 60
1.8.2. Some Experimental Examples: The Sr
Anomaly 61
1.9. Anomalous Contributions from Two Photon
Transitions and Dynamic Stark Effects 70
1.9.1. Introduction 70
1.9.2. A Short Description of Two Photon vs.
Two Step Excitation and Dynamic Stark
Effects of Atoms in Flames 70
1.9.3. Experimental Evidence of Two Photon
vs. Two Step Excitation and Dynamic
Stark Effects for Atoms in Flames 73
1.10. Laser Enhanced Ionization in the Density
Matrix Formalism 79
1.10.1. Introduction 79
1.10.2. Formulation of the Density Matrix
System of Equations 82
1.10.3. Solution of the Density Matrix System of
Equations 86
1.11. Comparison Between the Density Matrix
Formalism and Experimental Results 87
1.11.1. Density Matrix Equation Simulated
LEI Scans 87
1.11.2. Approximations in the Theory 91
1.11.3. Implications for LEI Spectrometry 92
Appendix: The Degree of Ionization for High
Chopping Frequency Continuous Wave
Excitation 93
References 95
CONTENTS vii
CHAPTER 2 FUNDAMENTAL MECHANISMS OF
LASER ENHANCED IONIZATION:
SIGNAL DETECTION 99
John C. Travis and Gregory C. Turk
2.1. Overview 99
2.1.1. Approaches to Deriving the LEI Signal
Response in One Dimension 99
2.1.2. The One Dimensional Approximation 100
2.1.3. Experimental Results 101
2.2. The Effect of an External Field on Ions
and Electrons 102
2.2.1. Sign Conventions 102
2.2.2. Positive Ions in the Flame 102
2.2.3. Electrons in the Flame 103
2.3. The Effect of Ions and Electrons on the Field
and Supporting Circuit 104
2.3.1. The Induction of Surface Charges on
Parallel Plates 104
2.3.2. Laplace s Equation and the Lines of
Force Construct 104
2.3.3. Poisson s Equation and the Interruption
of Field Lines 107
2.3.4. The Effect of Free Charges on the Surface
Charge and External Circuit 107
2.3.5. Image Charges and the Ionization
Chamber Model 108
2.4. The Perturbation of a Flame by an External
Applied Field 111
2.4.1. The Volume Ionization Rate and
Three Body Recombination Coefficient in
an Ideal, Uniform Flame 111
2.4.2. Ionization Equilibrium 112
2.4.3. Perturbation of Ionization Equilibrium
by a Field 113
2.5. The Perturbation of the Field by the Flame 114
2.5.1. The Positive Ion Space Charge, or Sheath 114
2.5.2. Extent of the Sheath 116
2.5.3. Electric Field Saturation —and Beyond 116
Viii CONTENTS
2.6. The Point Charge Model for LEI Using Pulsed
Lasers 117
2.6.1. The Electron Pulse 117
2.6.2. The Ion Pulse 119
2.7. Numerical Modeling 120
2.7.1. Diffusion and the Continuity Equation 120
2.7.2. Electron Charge Profiles for Laser
Induced Charges in a Fixed Field 121
2.7.3. Electron Current Induction for Laser
Induced Charges in a Fixed Field 123
2.7.4. Positive Ion Charge Profiles for
Laser Induced Charges in a Fixed Field 125
2.7.5. Positive Ion Current Densities for
Laser Induced Charges in a Fixed Field 126
2.7.6. Field Distortion Efffects for Large
Laser Induced Charge Densities 126
2.7.7. Current Pulse Distortions 128
2.7.8. Modeling the Flame Background 131
2.8. Relationship of Theory to Laboratory Results 133
2.8.1. Current vs. Voltage Curves in Analytical
Flames 133
2.8.2. Pulsed LEI Peak Shapes and Induced
Charge Apportionment 136
2.8.3. Matrix Effects and Recovery Curves 138
2.8.4. Evolution of Electrodes 140
2.8.5. Sheath Displacement Imaging 141
2.8.6. Translated Rod Imaging 142
2.8.7. Modulated Continuous Wave Current
Profiles 142
2.8.8. Advantages of Continuous Wave Lasers 147
2.9. Unfinished Business 149
2.9.1. Electrode Design 149
2.9.2. High Frequency Detection 150
2.9.3. Draining of Easily Ionized Elements 150
2.9.4. Other Plasmas 150
2.9.5. Ion Mass Selectivity 151
2.10. Conclusion 152
CONTENTS ix
Appendix: A Computer Program to Model LEI
Charge Transport and Current
Generation 152
References 159
CHAPTER 3 ANALYTICAL PERFORMANCE OF LASER
ENHANCED IONIZATION IN FLAMES 161
Gregory C. Turk
3.1. Introduction 161
3.2. Instrumentation 161
3.2.1. Flames 162
3.2.2. Lasers 164
3.2.3. The Ionization Probe 170
3.2.4. Electronics 172
3.3. Noise Characteristics 176
3.3.1. Multiplicative Noise 177
3.3.2. Additive Noise 181
3.4. Limits of Detection 186
3.4.1. Theoretical Detection Limits 186
3.4.2. Compilation of Measured Detection
Limits 187
3.5. Spectral Interferences 199
3.5.1. Line Overlaps 199
3.5.2. Broadband Spectral Interferences 201
3.6. Summary and Future Directions for LEI
Spectrometry 207
References 208
CHAPTER 4 APPLICATIONS OF LASER ENHANCED
IONIZATION SPECTROMETRY 213
Robert B. Green
4.1. Introduction 213
4.2. LEI Spectrometry of Real Samples 214
4.2.1. General Analysis 215
4.2.2. Diagnostic Measurements 223
4.3. Conclusions 230
References 231
X CONTENTS
CHAPTER 5 NONFLAME RESERVOIRS FOR LASER
ENHANCED IONIZATION SPECTROMETRY 233
Nikita B. Zorov
5.1. Introduction 233
5.2. Atmospheric Pressure Electrothermal Atomizers 233
5.3. Hybrid Combinations of Flame and
Electrothermal Atomizers 239
5.3.1. Analysis of Orthophosphoric Acid 245
5.3.2. Determination of Indium in Cd Hg Te
Alloy 247
5.3.3. Determination of Copper in Germanium 247
5.3.4. Determination of Gold in Silver Nitrate 248
5.3.5. Analysis of NH4F and NaF 249
5.4. Electrothermal Atomization in a Low Pressure
Noble Gas Atmosphere 249
5.4.1. Figures of Merit 251
5.4.2. Interferences 251
5.5. Resonant LEI of Atoms in an Inductively
Coupled Plasma 252
5.5.1. ICP Plasma Diagnostics 254
5.6. Other Plasma Atomization Systems in LEI
Spectrometry 254
5.6.1. Helium Microarc Induced Plasma 254
5.6.2. Microwave Induced Active Nitrogen
Plasma 255
5.6.3. Microwave Resonant Cavity in Flames 256
5.7. LEI in Laser Generated Plumes 256
5.8. Conclusions 259
References 260
CHAPTER 6 IONS AND PHOTONS: INTERPLAY OF
LASER INDUCED IONIZATION AND
FLUORESCENCE TECHNIQUES IN
DIFFERENT ATOMIC AND MOLECULAR
RESERVOIRS 265
Nicolo Omenetto and Paul B. Farnsworth
6.1. Introduction 265
6.2. General Theoretical Considerations 267
CONTENTS Xi
6.3. General Experimental Considerations 277
6.4. Analytical Studies 280
6.4.1. Evaluation of the Total Number Density
by Means of Saturated Fluorescence 280
6.4.2. Resonance Ionization Detection
of Photons 283
6.5. Spectroscopic Studies 290
6.5.1. Simultaneous Fluorescence and
Ionization Measurements: Power
Dependence of the Signals 290
6.5.2. Optical Detection of LEI and
Multiphoton Ionization 299
6.5.3. Evaluation of Fundamental Ionization
Parameters by Fluorescence Dip
Spectroscopy 306
6.5.4 Simultaneous Molecular Ionization and
Fluorescence Spectroscopy 312
6.5.5. Time Resolved Studies 315
6.5.6. Miscellaneous Applications 320
6.6. Conclusions 322
References 323
INDEX 327
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV010992531 |
callnumber-first | Q - Science |
callnumber-label | QD96 |
callnumber-raw | QD96.L3 |
callnumber-search | QD96.L3 |
callnumber-sort | QD 296 L3 |
callnumber-subject | QD - Chemistry |
classification_rvk | UH 5710 VG 8850 |
ctrlnum | (OCoLC)32923874 (DE-599)BVBBV010992531 |
dewey-full | 621.36/6 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.36/6 |
dewey-search | 621.36/6 |
dewey-sort | 3621.36 16 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03072nam a2200481 cb4500</leader><controlfield tag="001">BV010992531</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19970210 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961009s1996 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471576840</subfield><subfield code="9">0-471-57684-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32923874</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010992531</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD96.L3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.36/6</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5710</subfield><subfield code="0">(DE-625)145690:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VG 8850</subfield><subfield code="0">(DE-625)147230:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Laser enhanced ionization spectrometry</subfield><subfield code="c">ed. by John C. Travis ...</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Laser-enhanced ionization spectrometry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 334 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Chemical analysis</subfield><subfield code="v">136</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Wiley-Interscience publication</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Laser-enhanced ionization (LEI) is a type of optical spectrometry that employs photoexcitation to ionize atoms selectively. Over the past two decades, this method - originally known as the optogalvanic effect - has been the object of extensive worldwide research and the subject of numerous papers and published articles. Until now, however, no single volume has presented this wealth of theory and data in a cohesive and accessible form</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Laser-Enhanced Ionization Spectrometry fills this gap in the literature. It synthesizes vast amounts of information previously available only through scattered research papers and covers every aspect of the technology. From underlying principles and theory to methodology and applications. This book examines the state of the art of LEI, compares it with other methods, and demonstrates how laser-enhanced collisional ionization is especially well suited to analytical atomic spectrometry</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The contributors to this collaborative effect - from Russia, Australia, Europe, and the United States - clarify terminology, explain the inner workings of LEI, and offer derivations for both idealized forms and realistic approximations. They also analyze the capabilities and limitations of this technique as an analytical method, including instrumentation, sources of noise, limits of detection, interferences, and applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectroscopie laser</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laser spectroscopy</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Laserspektroskopie</subfield><subfield code="0">(DE-588)4034620-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ionisation</subfield><subfield code="0">(DE-588)4135379-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Laserspektroskopie</subfield><subfield code="0">(DE-588)4034620-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ionisation</subfield><subfield code="0">(DE-588)4135379-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Travis, John C.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Chemical analysis</subfield><subfield code="v">136</subfield><subfield code="w">(DE-604)BV000008780</subfield><subfield code="9">136</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007357568&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007357568</subfield></datafield></record></collection> |
id | DE-604.BV010992531 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:02:15Z |
institution | BVB |
isbn | 0471576840 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007357568 |
oclc_num | 32923874 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-703 DE-83 |
owner_facet | DE-355 DE-BY-UBR DE-703 DE-83 |
physical | XXI, 334 S. graph. Darst. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Wiley |
record_format | marc |
series | Chemical analysis |
series2 | Chemical analysis A Wiley-Interscience publication |
spelling | Laser enhanced ionization spectrometry ed. by John C. Travis ... Laser-enhanced ionization spectrometry New York [u.a.] Wiley 1996 XXI, 334 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Chemical analysis 136 A Wiley-Interscience publication Laser-enhanced ionization (LEI) is a type of optical spectrometry that employs photoexcitation to ionize atoms selectively. Over the past two decades, this method - originally known as the optogalvanic effect - has been the object of extensive worldwide research and the subject of numerous papers and published articles. Until now, however, no single volume has presented this wealth of theory and data in a cohesive and accessible form Laser-Enhanced Ionization Spectrometry fills this gap in the literature. It synthesizes vast amounts of information previously available only through scattered research papers and covers every aspect of the technology. From underlying principles and theory to methodology and applications. This book examines the state of the art of LEI, compares it with other methods, and demonstrates how laser-enhanced collisional ionization is especially well suited to analytical atomic spectrometry The contributors to this collaborative effect - from Russia, Australia, Europe, and the United States - clarify terminology, explain the inner workings of LEI, and offer derivations for both idealized forms and realistic approximations. They also analyze the capabilities and limitations of this technique as an analytical method, including instrumentation, sources of noise, limits of detection, interferences, and applications Spectroscopie laser Laser spectroscopy Laserspektroskopie (DE-588)4034620-1 gnd rswk-swf Ionisation (DE-588)4135379-1 gnd rswk-swf Laserspektroskopie (DE-588)4034620-1 s Ionisation (DE-588)4135379-1 s DE-604 Travis, John C. Sonstige oth Chemical analysis 136 (DE-604)BV000008780 136 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007357568&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Laser enhanced ionization spectrometry Chemical analysis Spectroscopie laser Laser spectroscopy Laserspektroskopie (DE-588)4034620-1 gnd Ionisation (DE-588)4135379-1 gnd |
subject_GND | (DE-588)4034620-1 (DE-588)4135379-1 |
title | Laser enhanced ionization spectrometry |
title_alt | Laser-enhanced ionization spectrometry |
title_auth | Laser enhanced ionization spectrometry |
title_exact_search | Laser enhanced ionization spectrometry |
title_full | Laser enhanced ionization spectrometry ed. by John C. Travis ... |
title_fullStr | Laser enhanced ionization spectrometry ed. by John C. Travis ... |
title_full_unstemmed | Laser enhanced ionization spectrometry ed. by John C. Travis ... |
title_short | Laser enhanced ionization spectrometry |
title_sort | laser enhanced ionization spectrometry |
topic | Spectroscopie laser Laser spectroscopy Laserspektroskopie (DE-588)4034620-1 gnd Ionisation (DE-588)4135379-1 gnd |
topic_facet | Spectroscopie laser Laser spectroscopy Laserspektroskopie Ionisation |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007357568&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000008780 |
work_keys_str_mv | AT travisjohnc laserenhancedionizationspectrometry |