How to prove it: a structured approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | Undetermined |
Veröffentlicht: |
Cambridge
Cambridge Univ. Press
1996
|
Ausgabe: | Repr. |
Schlagworte: | |
Beschreibung: | IX, 309 S. graph. Darst. |
ISBN: | 0521441161 0521446635 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV010988613 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 961008s1996 d||| |||| 00||| und d | ||
020 | |a 0521441161 |9 0-521-44116-1 | ||
020 | |a 0521446635 |9 0-521-44663-5 | ||
035 | |a (OCoLC)174715524 | ||
035 | |a (DE-599)BVBBV010988613 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | |a und | ||
049 | |a DE-91G |a DE-91 | ||
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
084 | |a MAT 036f |2 stub | ||
100 | 1 | |a Velleman, Daniel J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a How to prove it |b a structured approach |c Daniel J. Velleman |
250 | |a Repr. | ||
264 | 1 | |a Cambridge |b Cambridge Univ. Press |c 1996 | |
300 | |a IX, 309 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Beweistheorie |0 (DE-588)4145177-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beweis |0 (DE-588)4132532-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mengenlehre |0 (DE-588)4074715-3 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Beweistheorie |0 (DE-588)4145177-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Beweis |0 (DE-588)4132532-1 |D s |
689 | 1 | 1 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Mengenlehre |0 (DE-588)4074715-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007354717 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804125478038011904 |
---|---|
any_adam_object | |
author | Velleman, Daniel J. |
author_facet | Velleman, Daniel J. |
author_role | aut |
author_sort | Velleman, Daniel J. |
author_variant | d j v dj djv |
building | Verbundindex |
bvnumber | BV010988613 |
classification_rvk | SK 130 |
classification_tum | MAT 036f |
ctrlnum | (OCoLC)174715524 (DE-599)BVBBV010988613 |
discipline | Mathematik |
edition | Repr. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01957nam a2200529 c 4500</leader><controlfield tag="001">BV010988613</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961008s1996 d||| |||| 00||| und d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521441161</subfield><subfield code="9">0-521-44116-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521446635</subfield><subfield code="9">0-521-44663-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)174715524</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010988613</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">und</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 036f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Velleman, Daniel J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">How to prove it</subfield><subfield code="b">a structured approach</subfield><subfield code="c">Daniel J. Velleman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Repr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 309 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweistheorie</subfield><subfield code="0">(DE-588)4145177-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Beweistheorie</subfield><subfield code="0">(DE-588)4145177-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007354717</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV010988613 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:02:11Z |
institution | BVB |
isbn | 0521441161 0521446635 |
language | Undetermined |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007354717 |
oclc_num | 174715524 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-91 DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM DE-91 DE-BY-TUM |
physical | IX, 309 S. graph. Darst. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Velleman, Daniel J. Verfasser aut How to prove it a structured approach Daniel J. Velleman Repr. Cambridge Cambridge Univ. Press 1996 IX, 309 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Beweistheorie (DE-588)4145177-6 gnd rswk-swf Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Beweis (DE-588)4132532-1 gnd rswk-swf Mengenlehre (DE-588)4074715-3 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Beweistheorie (DE-588)4145177-6 s DE-604 Beweis (DE-588)4132532-1 s Mathematik (DE-588)4037944-9 s 2\p DE-604 Mengenlehre (DE-588)4074715-3 s 3\p DE-604 Mathematische Logik (DE-588)4037951-6 s 4\p DE-604 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Velleman, Daniel J. How to prove it a structured approach Beweistheorie (DE-588)4145177-6 gnd Mathematische Logik (DE-588)4037951-6 gnd Mathematik (DE-588)4037944-9 gnd Beweis (DE-588)4132532-1 gnd Mengenlehre (DE-588)4074715-3 gnd |
subject_GND | (DE-588)4145177-6 (DE-588)4037951-6 (DE-588)4037944-9 (DE-588)4132532-1 (DE-588)4074715-3 (DE-588)4151278-9 |
title | How to prove it a structured approach |
title_auth | How to prove it a structured approach |
title_exact_search | How to prove it a structured approach |
title_full | How to prove it a structured approach Daniel J. Velleman |
title_fullStr | How to prove it a structured approach Daniel J. Velleman |
title_full_unstemmed | How to prove it a structured approach Daniel J. Velleman |
title_short | How to prove it |
title_sort | how to prove it a structured approach |
title_sub | a structured approach |
topic | Beweistheorie (DE-588)4145177-6 gnd Mathematische Logik (DE-588)4037951-6 gnd Mathematik (DE-588)4037944-9 gnd Beweis (DE-588)4132532-1 gnd Mengenlehre (DE-588)4074715-3 gnd |
topic_facet | Beweistheorie Mathematische Logik Mathematik Beweis Mengenlehre Einführung |
work_keys_str_mv | AT vellemandanielj howtoproveitastructuredapproach |