Minimax theorems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston [u.a.]
Birkhäuser
1996
|
Schriftenreihe: | Progress in nonlinear differential equations and their applications
24 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VIII, 159 S. |
ISBN: | 0817639136 3764339136 9780817639136 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010984297 | ||
003 | DE-604 | ||
005 | 20170726 | ||
007 | t | ||
008 | 961002s1996 |||| 00||| eng d | ||
016 | 7 | |a 948456752 |2 DE-101 | |
020 | |a 0817639136 |9 0-8176-3913-6 | ||
020 | |a 3764339136 |9 3-7643-3913-6 | ||
020 | |a 9780817639136 |9 978-0-8176-3913-6 | ||
035 | |a (OCoLC)34745983 | ||
035 | |a (DE-599)BVBBV010984297 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-12 |a DE-703 |a DE-355 |a DE-19 |a DE-706 |a DE-634 |a DE-11 |a DE-188 |a DE-83 | ||
050 | 0 | |a QC20.7.B6 | |
082 | 0 | |a 515/.64 |2 20 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
084 | |a 35A15 |2 msc | ||
084 | |a MAT 916f |2 stub | ||
084 | |a MAT 354f |2 stub | ||
100 | 1 | |a Willem, Michel |e Verfasser |4 aut | |
245 | 1 | 0 | |a Minimax theorems |c Michel Willem |
264 | 1 | |a Boston [u.a.] |b Birkhäuser |c 1996 | |
300 | |a VIII, 159 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in nonlinear differential equations and their applications |v 24 | |
650 | 7 | |a Maximums et minimums |2 ram | |
650 | 7 | |a Physique mathématique |2 ram | |
650 | 7 | |a Problèmes aux limites |2 ram | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Boundary value problems | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Maxima and minima | |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Minimax-Theorem |0 (DE-588)4135131-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Minimax-Theorem |0 (DE-588)4135131-9 |D s |
689 | 0 | 1 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Progress in nonlinear differential equations and their applications |v 24 |w (DE-604)BV007934389 |9 24 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007350960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007350960 |
Datensatz im Suchindex
_version_ | 1804125472822394880 |
---|---|
adam_text | Contents
Introduction 1
1 Mountain pass theorem 7
1.1 Differentiable functionals 7
1.2 Quantitative deformation lemma 11
1.3 Mountain pass theorem 12
1.4 Semilinear Dirichlet problem 14
1.5 Symmetry and compactness 16
1.6 Symmetric solitary waves 18
1.7 Subcritical Sobolev inequalities 20
1.8 Non symmetric solitary waves 23
1.9 Critical Sobolev inequality 26
1.10 Critical nonlinearities 32
2 Linking theorem 37
2.1 Quantitative deformation lemma 37
2.2 Ekeland variational principle 39
2.3 General minimax principle 41
2.4 Semilinear Dirichlet problem 43
2.5 Location theorem 49
2.6 Critical nonlinearities 50
3 Fountain theorem 55
3.1 Equivariant deformation 55
3.2 Fountain theorem 56
3.3 Semilinear Dirichlet problem 58
3.4 Multiple solitary waves 60
3.5 A dual theorem 65
3.6 Concave and convex nonlinearities 67
3.7 Concave and critical nonlinearities 68
viii CONTENTS
4 Nehari manifold 71
4.1 Definition of Nehari manifold 71
4.2 Ground states 71
4.3 Properties of critical values 74
4.4 Nodal solutions 76
5 Relative category 81
5.1 Category 81
5.2 Relative category 82
5.3 Quantitative deformation lemma 86
5.4 Minimax theorem 89
5.5 Critical nonlinearities 90
6 Generalized linking theorem 95
6.1 Degree theory 95
6.2 Pseudogradient flow 97
6.3 Generalized linking theorem 100
6.4 Semilinear Schrodinger equation 102
7 Generalized Kadomtsev Petviashvili equation 109
7.1 Definition of solitary waves 109
7.2 Functional setting 110
7.3 Existence of solitary waves 112
7.4 Variational identity 114
8 Representation of Palais Smale sequences 117
8.1 Invariance by translations 117
8.2 Symmetric domains 124
8.3 Invariance by dilations 125
8.4 Symmetric domains 132
Appendix A : Superposition operator 133
Appendix B : Variational identities 135
Appendix C : Symmetry of minimizers 139
Appendix D : Topological degree 145
Bibliography 153
Index of Notations 161
Index 162
|
any_adam_object | 1 |
author | Willem, Michel |
author_facet | Willem, Michel |
author_role | aut |
author_sort | Willem, Michel |
author_variant | m w mw |
building | Verbundindex |
bvnumber | BV010984297 |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.B6 |
callnumber-search | QC20.7.B6 |
callnumber-sort | QC 220.7 B6 |
callnumber-subject | QC - Physics |
classification_rvk | SK 540 SK 870 |
classification_tum | MAT 916f MAT 354f |
ctrlnum | (OCoLC)34745983 (DE-599)BVBBV010984297 |
dewey-full | 515/.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.64 |
dewey-search | 515/.64 |
dewey-sort | 3515 264 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02119nam a2200553 cb4500</leader><controlfield tag="001">BV010984297</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170726 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961002s1996 |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">948456752</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817639136</subfield><subfield code="9">0-8176-3913-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764339136</subfield><subfield code="9">3-7643-3913-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817639136</subfield><subfield code="9">978-0-8176-3913-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)34745983</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010984297</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC20.7.B6</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.64</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35A15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 916f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 354f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Willem, Michel</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimax theorems</subfield><subfield code="c">Michel Willem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 159 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in nonlinear differential equations and their applications</subfield><subfield code="v">24</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Maximums et minimums</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Physique mathématique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Problèmes aux limites</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxima and minima</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Minimax-Theorem</subfield><subfield code="0">(DE-588)4135131-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Minimax-Theorem</subfield><subfield code="0">(DE-588)4135131-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in nonlinear differential equations and their applications</subfield><subfield code="v">24</subfield><subfield code="w">(DE-604)BV007934389</subfield><subfield code="9">24</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007350960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007350960</subfield></datafield></record></collection> |
id | DE-604.BV010984297 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:02:06Z |
institution | BVB |
isbn | 0817639136 3764339136 9780817639136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007350960 |
oclc_num | 34745983 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-12 DE-703 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-706 DE-634 DE-11 DE-188 DE-83 |
owner_facet | DE-91G DE-BY-TUM DE-12 DE-703 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-706 DE-634 DE-11 DE-188 DE-83 |
physical | VIII, 159 S. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in nonlinear differential equations and their applications |
series2 | Progress in nonlinear differential equations and their applications |
spelling | Willem, Michel Verfasser aut Minimax theorems Michel Willem Boston [u.a.] Birkhäuser 1996 VIII, 159 S. txt rdacontent n rdamedia nc rdacarrier Progress in nonlinear differential equations and their applications 24 Maximums et minimums ram Physique mathématique ram Problèmes aux limites ram Mathematische Physik Boundary value problems Mathematical physics Maxima and minima Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Minimax-Theorem (DE-588)4135131-9 gnd rswk-swf Minimax-Theorem (DE-588)4135131-9 s Partielle Differentialgleichung (DE-588)4044779-0 s DE-604 Progress in nonlinear differential equations and their applications 24 (DE-604)BV007934389 24 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007350960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Willem, Michel Minimax theorems Progress in nonlinear differential equations and their applications Maximums et minimums ram Physique mathématique ram Problèmes aux limites ram Mathematische Physik Boundary value problems Mathematical physics Maxima and minima Partielle Differentialgleichung (DE-588)4044779-0 gnd Minimax-Theorem (DE-588)4135131-9 gnd |
subject_GND | (DE-588)4044779-0 (DE-588)4135131-9 |
title | Minimax theorems |
title_auth | Minimax theorems |
title_exact_search | Minimax theorems |
title_full | Minimax theorems Michel Willem |
title_fullStr | Minimax theorems Michel Willem |
title_full_unstemmed | Minimax theorems Michel Willem |
title_short | Minimax theorems |
title_sort | minimax theorems |
topic | Maximums et minimums ram Physique mathématique ram Problèmes aux limites ram Mathematische Physik Boundary value problems Mathematical physics Maxima and minima Partielle Differentialgleichung (DE-588)4044779-0 gnd Minimax-Theorem (DE-588)4135131-9 gnd |
topic_facet | Maximums et minimums Physique mathématique Problèmes aux limites Mathematische Physik Boundary value problems Mathematical physics Maxima and minima Partielle Differentialgleichung Minimax-Theorem |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007350960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV007934389 |
work_keys_str_mv | AT willemmichel minimaxtheorems |