Martingales and stochastic analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore [u.a.]
World Scientific
1995
|
Schriftenreihe: | Series on multivariate analysis
1 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 501 S. |
ISBN: | 981022477X |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010950043 | ||
003 | DE-604 | ||
005 | 20020423 | ||
007 | t | ||
008 | 960916s1995 si |||| 00||| eng d | ||
020 | |a 981022477X |9 981-02-2477-X | ||
035 | |a (OCoLC)33243595 | ||
035 | |a (DE-599)BVBBV010950043 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a si |c XB-SG | ||
049 | |a DE-739 |a DE-824 |a DE-384 |a DE-N2 |a DE-91G |a DE-521 |a DE-11 | ||
050 | 0 | |a QA274.5.Y44 1995 | |
082 | 0 | |a 519.2/87 20 | |
082 | 0 | |a 519.2/87 |2 20 | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a MAT 606f |2 stub | ||
084 | |a MAT 605f |2 stub | ||
100 | 1 | |a Yeh, James |e Verfasser |4 aut | |
245 | 1 | 0 | |a Martingales and stochastic analysis |c J. Yeh |
264 | 1 | |a Singapore [u.a.] |b World Scientific |c 1995 | |
300 | |a XIII, 501 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Series on multivariate analysis |v 1 | |
650 | 7 | |a Analyse stochastique |2 ram | |
650 | 7 | |a Martingales (mathématiques) |2 ram | |
650 | 4 | |a Martingales (Mathematics) | |
650 | 4 | |a Stochastic analysis | |
650 | 0 | 7 | |a Stochastische Analysis |0 (DE-588)4132272-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Martingal |0 (DE-588)4126466-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Martingal |0 (DE-588)4126466-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Martingal |0 (DE-588)4126466-6 |D s |
689 | 2 | 1 | |a Stochastische Analysis |0 (DE-588)4132272-1 |D s |
689 | 2 | |5 DE-604 | |
830 | 0 | |a Series on multivariate analysis |v 1 |w (DE-604)BV010950028 |9 1 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007323888&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007323888 |
Datensatz im Suchindex
_version_ | 1804125437211705344 |
---|---|
adam_text | SERIES ON .J MA RTINGALES AND STOCHASTIC ANALYSIS J. YEH DEPARTMENT OF
MATHEMATICS UNIVERSITY 0/ CALIFORNIA, IRVINE WORLD SCIENTIFIC SINGAPORE
* NEW JERSEY * LONDON * HONG KONG CONTENTS PREFACE V NOTATIONS XI 1
STOCHASTIC PROCESSES 1 §1 GENERATED A -ALGEBRAS 1 §2 STOCHASTIC
PROCESSES 11 [I] MEASURABLE AND PROGRESSIVELY MEASURABLE PROCESSES 11
[II] PREDICTABLE PROCESSES 19 §3 STOPPING TIMES 25 [I] STOPPING TIMES
FOR STOCHASTIC PROCESSES WITH CONTINUOUS TIME . . . . 25 [II] STOPPING
TIMES FOR STOCHASTIC PROCESSES WITH DISCRETE TIME 39 [III] RANDOM
VARIABLES AT STOPPING TIMES 41 [IV] STOPPED PROCESSES AND TRUNCATED
PROCESSES 45 §4 CONVERGENCE IN L P AND UNIFORM INTEGRABILITY 49 [I]
CONVERGENCE IN L P 49 [II] UNIFORMLY INTEGRABLE SYSTEMS OF RANDOM
VARIABLES 53 2 MARTINGALES 71 §5 MARTINGALE, SUBMARTINGALE AND
SUPERMARTINGALE 71 [I] MARTINGALE, SUBMARTINGALE AND SUPERMARTINGALE
PROPERTIES 71 [II] CONVEXITY THEOREMS 76 [IIIJ DISCRETE TIME INCREASING
PROCESSES AND DOOB DECOMPOSITION . . . . 78 [IV] MARTINGALE TRANSFORM 81
[V] SOME EXAMPLES 84 §6 FUNDAMENTAL SUBMARTINGALE INEQUALITIES 86 [I]
OPTIONAL STOPPING AND OPTIONAL SAMPLING 87 [II] MAXIMAL AND MINIMAL
INEQUALITIES 93 [III] UPCROSSING AND DOWNCROSSING INEQUALITIES 101 VN
VIII CONTENTS §7 CONVERGENCE OF SUBMARTINGALES 110 [I] CONVERGENCE OF
SUBMARTINGALES WITH DISCRETE TIME 110 [II] CONVERGENCE OF SUBMARTINGALES
WITH CONTINUOUS TIME 114 [III] CLOSING A SUBMARTINGALE WITH A FINAL
ELEMENT 116 [IV] DISCRETE TIME 1,2-MARTINGALES 119 §8 UNIFORMLY
INTEGRABLE SUBMARTINGALES 122 [I] CONVERGENCE OF UNIFORMLY INTEGRABLE
SUBMARTINGALES 122 [II] SUBMARTINGALES WITH REVERSED TIME 124 [HI]
OPTIONAL SAMPLING BY UNBOUNDED STOPPING TIMES 131 [IV] UNIFORM
INTEGRABILITY OF RANDOM VARIABLES AT STOPPING TIMES . . . . 141 §9
REGULARITY OF SAMPLE FUNCTIONS OF SUBMARTINGALES 145 [I] SAMPLE
FUNCTIONS OF RIGHT-CONTINUOUS SUBMARTINGALES 145 [II] RIGHT-CONTINUOUS
MODIFICATION OF A SUBMARTINGALE 149 §10 INCREASING PROCESSES 155 [I] THE
LEBESGUE STIELTJES INTEGRAL 155 [II] INTEGRATION WITH RESPECT TO
INCREASING PROCESSES 158 [III] DOOB-MEYER DECOMPOSITION 171 [IV] REGULAR
SUBMARTINGALES 187 3 STOCHASTIC INTEGRALS 197 §11 L2-MARTINGALES AND
QUADRATIC VARIATION PROCESSES 197 [I] THE SPACE OF RIGHT-CONTINUOUS
^-MARTINGALES 197 [II] SIGNED LEBESGUE-STIELTJES MEASURES 205 [III]
LOCALLY BOUNDED VARIATION PROCESSES 207 [IV] QUADRATIC VARIATION
PROCESSES 212 §12 STOCHASTIC INTEGRALS WITH RESPECT TO MARTINGALES , 221
[I] STOCHASTIC INTEGRAL OF BOUNDED LEFT-CONTINUOUS ADAPTED SIMPLE
PROCESSES W. R. T. L 2 -MARTINGALES 222 [II] STOCHASTIC INTEGRAL OF
PREDICTABLE PROCESSES W. R. T. I^-MARTINGALES . . 235 §13 ADAPTED
BROWNIAN MOTIONS 262 [I] PROCESSES WITH INDEPENDENT INCREMENTS 262 [II]
BROWNIAN MOTIONS IN R D 270 [III] 1-DIMENSIONAL BROWNIAN MOTIONS 286
[IV] STOCHASTIC INTEGRALS WITH RESPECT TO A BROWNIAN MOTION 290 §14
EXTENSIONS OF THE STOCHASTIC INTEGRAL 297 [I] LOCAL I^-MARTINGALES AND
THEIR QUADRATIC VARIATION PROCESSES 297 [II] EXTENSIONS OF THE
STOCHASTIC INTEGRAL TO LOCAL MARTINGALES 306 CONTENTS IX §15 ITO S
FORMULA 318 [I] CONTINUOUS LOCAL SEMIMARTINGALES AND ITO S FORMULA 318
[II] STOCHASTIC INTEGRALS WITH RESPECT TO QUASIMARTIGALES 333 [III]
EXPONENTIAL QUASIMARTINGALES 335 [IV] MULTIDIMENSIONAL ITO S FORMULA 340
§16 ITO S STOCHASTIC CALCULUS 344 [I] THE SPACE OF STOCHASTIC
DIFFERENTIALS 344 [II] FISK-STRATONOVICH INTEGRALS 352 4 STOCHASTIC
DIFFERENTIAL EQUATIONS 357 §17 THE SPACE OF CONTINUOUS FUNCTIONS 357 [I]
FUNCTION SPACE REPRESENTATION OF CONTINUOUS PROCESSES 357 [II]
METRIZATION OF THE SPACE OF CONTINUOUS FUNCTIONS 364 §18 DEFINITION AND
FUNCTION SPACE REPRESENTATION OF SOLUTION 368 [I] DEFINITION OF
SOLUTIONS 368 [II] FUNCTION SPACE REPRESENTATION OF SOLUTIONS 372 [III]
INITIAL VALUE PROBLEMS 385 §19 EXISTENCE AND UNIQUENESS OF SOLUTIONS 395
[I] UNIQUENESS IN PROBABILITY LAW AND PATHWISE UNIQUENESS OF SOLUTIONS .
395 [II] SIMULTANEOUS REPRESENTATION OF TWO SOLUTIONS ON A FUNCTION
SPACE . . 405 §20 STRONG SOLUTIONS 419 [I] EXISTENCE OF STRONG SOLUTIONS
419 [II] UNIQUENESS OF STRONG SOLUTIONS 432 A STOCHASTIC INDEPENDENCE
443 B CONDITIONAL EXPECTATIONS 453 C REGULAR CONDITIONAL PROBABILITIES
475 D MULTIDIMENSIONAL NORMAL DISTRIBUTIONS 487 BIBLIOGRAPHY 495 INDEX *
498
|
any_adam_object | 1 |
author | Yeh, James |
author_facet | Yeh, James |
author_role | aut |
author_sort | Yeh, James |
author_variant | j y jy |
building | Verbundindex |
bvnumber | BV010950043 |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274.5.Y44 1995 |
callnumber-search | QA274.5.Y44 1995 |
callnumber-sort | QA 3274.5 Y44 41995 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 820 |
classification_tum | MAT 606f MAT 605f |
ctrlnum | (OCoLC)33243595 (DE-599)BVBBV010950043 |
dewey-full | 519.2/8720 519.2/87 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2/87 20 519.2/87 |
dewey-search | 519.2/87 20 519.2/87 |
dewey-sort | 3519.2 287 220 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01993nam a2200541 cb4500</leader><controlfield tag="001">BV010950043</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20020423 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960916s1995 si |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981022477X</subfield><subfield code="9">981-02-2477-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)33243595</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010950043</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">si</subfield><subfield code="c">XB-SG</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274.5.Y44 1995</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2/87 20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2/87</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 605f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yeh, James</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Martingales and stochastic analysis</subfield><subfield code="c">J. Yeh</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 501 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series on multivariate analysis</subfield><subfield code="v">1</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analyse stochastique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Martingales (mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martingales (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Martingal</subfield><subfield code="0">(DE-588)4126466-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Martingal</subfield><subfield code="0">(DE-588)4126466-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Martingal</subfield><subfield code="0">(DE-588)4126466-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series on multivariate analysis</subfield><subfield code="v">1</subfield><subfield code="w">(DE-604)BV010950028</subfield><subfield code="9">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007323888&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007323888</subfield></datafield></record></collection> |
id | DE-604.BV010950043 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:01:33Z |
institution | BVB |
isbn | 981022477X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007323888 |
oclc_num | 33243595 |
open_access_boolean | |
owner | DE-739 DE-824 DE-384 DE-N2 DE-91G DE-BY-TUM DE-521 DE-11 |
owner_facet | DE-739 DE-824 DE-384 DE-N2 DE-91G DE-BY-TUM DE-521 DE-11 |
physical | XIII, 501 S. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | World Scientific |
record_format | marc |
series | Series on multivariate analysis |
series2 | Series on multivariate analysis |
spelling | Yeh, James Verfasser aut Martingales and stochastic analysis J. Yeh Singapore [u.a.] World Scientific 1995 XIII, 501 S. txt rdacontent n rdamedia nc rdacarrier Series on multivariate analysis 1 Analyse stochastique ram Martingales (mathématiques) ram Martingales (Mathematics) Stochastic analysis Stochastische Analysis (DE-588)4132272-1 gnd rswk-swf Martingal (DE-588)4126466-6 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Martingal (DE-588)4126466-6 s DE-604 Stochastischer Prozess (DE-588)4057630-9 s Stochastische Analysis (DE-588)4132272-1 s Series on multivariate analysis 1 (DE-604)BV010950028 1 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007323888&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Yeh, James Martingales and stochastic analysis Series on multivariate analysis Analyse stochastique ram Martingales (mathématiques) ram Martingales (Mathematics) Stochastic analysis Stochastische Analysis (DE-588)4132272-1 gnd Martingal (DE-588)4126466-6 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
subject_GND | (DE-588)4132272-1 (DE-588)4126466-6 (DE-588)4057630-9 |
title | Martingales and stochastic analysis |
title_auth | Martingales and stochastic analysis |
title_exact_search | Martingales and stochastic analysis |
title_full | Martingales and stochastic analysis J. Yeh |
title_fullStr | Martingales and stochastic analysis J. Yeh |
title_full_unstemmed | Martingales and stochastic analysis J. Yeh |
title_short | Martingales and stochastic analysis |
title_sort | martingales and stochastic analysis |
topic | Analyse stochastique ram Martingales (mathématiques) ram Martingales (Mathematics) Stochastic analysis Stochastische Analysis (DE-588)4132272-1 gnd Martingal (DE-588)4126466-6 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
topic_facet | Analyse stochastique Martingales (mathématiques) Martingales (Mathematics) Stochastic analysis Stochastische Analysis Martingal Stochastischer Prozess |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007323888&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV010950028 |
work_keys_str_mv | AT yehjames martingalesandstochasticanalysis |