The parsimonious universe: shape and form in the natural world
Can one set of basic laws account for both the recurring themes and the infinite variety of nature's designs? When it comes to shape and form, does nature simply proceed in the easiest, most efficient way? Complete answers to these questions are likely never to be discovered. Still, down throug...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Copernicus
1996
|
Schlagworte: | |
Zusammenfassung: | Can one set of basic laws account for both the recurring themes and the infinite variety of nature's designs? When it comes to shape and form, does nature simply proceed in the easiest, most efficient way? Complete answers to these questions are likely never to be discovered. Still, down through the ages, the investigation of symmetry and regularity in nature has yielded some fascinating and surprising insights. Out of this inquiry comes a specific branch of mathematics - the calculus of variations - which explores questions of optimization: Is the igloo the optimal housing form for minimizing heat loss? Do bees use the least possible amount of wax when building their hives? In The Parsimonious Universe, Stefan Hildebrandt and Anthony Tromba invite readers to join the search for the mathematical underpinnings of natural shapes and form. Moving from ancient times to the nuclear age, the book looks at centuries of evidence that the physical world adheres to the principle of the economy of means - meaning that nature achieves efficiency by being rather stingy with the energy it expends. On almost every page can be found historical discussions, striking color illustrations, and examples ranging from atomic nuclei to soap bubbles to spirals and fractals. Without using technical language, Hildebrandt and Tromba open up an intriguing avenue of scientific inquiry to an uninitiated readership, showing what can be discovered when mathematics is used to investigate the natural world. |
Beschreibung: | XIII, 330 S. zahlr. Ill. und graph. Darst. |
ISBN: | 0387979913 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV010947880 | ||
003 | DE-604 | ||
005 | 20010706 | ||
007 | t | ||
008 | 960912s1996 ad|| |||| 00||| eng d | ||
020 | |a 0387979913 |9 0-387-97991-3 | ||
035 | |a (OCoLC)32548691 | ||
035 | |a (DE-599)BVBBV010947880 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-91G |a DE-12 |a DE-92 |a DE-824 |a DE-29 |a DE-19 |a DE-83 |a DE-11 | ||
050 | 0 | |a BH301.N3 | |
082 | 0 | |a 117 |2 20 | |
084 | |a CC 6300 |0 (DE-625)17655: |2 rvk | ||
084 | |a QH 400 |0 (DE-625)141571: |2 rvk | ||
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
084 | |a 5,1 |2 ssgn | ||
084 | |a 00A35 |2 msc | ||
084 | |a 49-01 |2 msc | ||
084 | |a MAT 533f |2 stub | ||
084 | |a MAT 490f |2 stub | ||
084 | |a 49-03 |2 msc | ||
100 | 1 | |a Hildebrandt, Stefan |d 1936-2015 |e Verfasser |0 (DE-588)119219050 |4 aut | |
245 | 1 | 0 | |a The parsimonious universe |b shape and form in the natural world |c Stefan Hildebrandt ; Anthony Tromba |
264 | 1 | |a New York, NY |b Copernicus |c 1996 | |
300 | |a XIII, 330 S. |b zahlr. Ill. und graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a Can one set of basic laws account for both the recurring themes and the infinite variety of nature's designs? When it comes to shape and form, does nature simply proceed in the easiest, most efficient way? Complete answers to these questions are likely never to be discovered. Still, down through the ages, the investigation of symmetry and regularity in nature has yielded some fascinating and surprising insights. Out of this inquiry comes a specific branch of mathematics - the calculus of variations - which explores questions of optimization: Is the igloo the optimal housing form for minimizing heat loss? Do bees use the least possible amount of wax when building their hives? In The Parsimonious Universe, Stefan Hildebrandt and Anthony Tromba invite readers to join the search for the mathematical underpinnings of natural shapes and form. Moving from ancient times to the nuclear age, the book looks at centuries of evidence that the physical world adheres to the principle of the economy of means - meaning that nature achieves efficiency by being rather stingy with the energy it expends. On almost every page can be found historical discussions, striking color illustrations, and examples ranging from atomic nuclei to soap bubbles to spirals and fractals. Without using technical language, Hildebrandt and Tromba open up an intriguing avenue of scientific inquiry to an uninitiated readership, showing what can be discovered when mathematics is used to investigate the natural world. | |
650 | 7 | |a Filosofische aspecten |2 gtt | |
650 | 7 | |a Natuur |2 gtt | |
650 | 7 | |a Vorm |2 gtt | |
650 | 7 | |a Wiskunde |2 gtt | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Philosophie | |
650 | 4 | |a Calculus of variations | |
650 | 4 | |a Form (Philosophy) | |
650 | 4 | |a Motion | |
650 | 4 | |a Nature (Aesthetics) | |
650 | 0 | 7 | |a Bewegung |0 (DE-588)4006311-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Variationsrechnung |0 (DE-588)4062355-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Natur |0 (DE-588)4041358-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Populärwissenschaftliche Darstellung |0 (DE-588)4140344-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prinzip der kleinsten Wirkung |0 (DE-588)4229778-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gestalt |0 (DE-588)4157135-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geschichte |0 (DE-588)4020517-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Minimalfläche |0 (DE-588)4127814-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ästhetik |0 (DE-588)4000626-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Ästhetik |0 (DE-588)4000626-8 |D s |
689 | 0 | 1 | |a Natur |0 (DE-588)4041358-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 1 | 1 | |a Natur |0 (DE-588)4041358-5 |D s |
689 | 1 | 2 | |a Geschichte |0 (DE-588)4020517-4 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Prinzip der kleinsten Wirkung |0 (DE-588)4229778-3 |D s |
689 | 2 | 1 | |a Populärwissenschaftliche Darstellung |0 (DE-588)4140344-7 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 3 | |5 DE-604 | |
689 | 4 | 0 | |a Minimalfläche |0 (DE-588)4127814-8 |D s |
689 | 4 | |5 DE-604 | |
689 | 5 | 0 | |a Bewegung |0 (DE-588)4006311-2 |D s |
689 | 5 | |8 1\p |5 DE-604 | |
689 | 6 | 0 | |a Gestalt |0 (DE-588)4157135-6 |D s |
689 | 6 | |8 2\p |5 DE-604 | |
700 | 1 | |a Tromba, Anthony J. |d 1943- |e Verfasser |0 (DE-588)142684996 |4 aut | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007321997 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804125434588168192 |
---|---|
any_adam_object | |
author | Hildebrandt, Stefan 1936-2015 Tromba, Anthony J. 1943- |
author_GND | (DE-588)119219050 (DE-588)142684996 |
author_facet | Hildebrandt, Stefan 1936-2015 Tromba, Anthony J. 1943- |
author_role | aut aut |
author_sort | Hildebrandt, Stefan 1936-2015 |
author_variant | s h sh a j t aj ajt |
building | Verbundindex |
bvnumber | BV010947880 |
callnumber-first | B - Philosophy, Psychology, Religion |
callnumber-label | BH301 |
callnumber-raw | BH301.N3 |
callnumber-search | BH301.N3 |
callnumber-sort | BH 3301 N3 |
callnumber-subject | BH - Aesthetics |
classification_rvk | CC 6300 QH 400 SK 380 |
classification_tum | MAT 533f MAT 490f |
ctrlnum | (OCoLC)32548691 (DE-599)BVBBV010947880 |
dewey-full | 117 |
dewey-hundreds | 100 - Philosophy & psychology |
dewey-ones | 117 - Structure |
dewey-raw | 117 |
dewey-search | 117 |
dewey-sort | 3117 |
dewey-tens | 110 - Metaphysics |
discipline | Mathematik Philosophie Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04764nam a2200901 c 4500</leader><controlfield tag="001">BV010947880</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20010706 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960912s1996 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387979913</subfield><subfield code="9">0-387-97991-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32548691</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010947880</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">BH301.N3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">117</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 6300</subfield><subfield code="0">(DE-625)17655:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 400</subfield><subfield code="0">(DE-625)141571:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">5,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">00A35</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 533f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 490f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49-03</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hildebrandt, Stefan</subfield><subfield code="d">1936-2015</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119219050</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The parsimonious universe</subfield><subfield code="b">shape and form in the natural world</subfield><subfield code="c">Stefan Hildebrandt ; Anthony Tromba</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Copernicus</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 330 S.</subfield><subfield code="b">zahlr. Ill. und graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Can one set of basic laws account for both the recurring themes and the infinite variety of nature's designs? When it comes to shape and form, does nature simply proceed in the easiest, most efficient way? Complete answers to these questions are likely never to be discovered. Still, down through the ages, the investigation of symmetry and regularity in nature has yielded some fascinating and surprising insights. Out of this inquiry comes a specific branch of mathematics - the calculus of variations - which explores questions of optimization: Is the igloo the optimal housing form for minimizing heat loss? Do bees use the least possible amount of wax when building their hives? In The Parsimonious Universe, Stefan Hildebrandt and Anthony Tromba invite readers to join the search for the mathematical underpinnings of natural shapes and form. Moving from ancient times to the nuclear age, the book looks at centuries of evidence that the physical world adheres to the principle of the economy of means - meaning that nature achieves efficiency by being rather stingy with the energy it expends. On almost every page can be found historical discussions, striking color illustrations, and examples ranging from atomic nuclei to soap bubbles to spirals and fractals. Without using technical language, Hildebrandt and Tromba open up an intriguing avenue of scientific inquiry to an uninitiated readership, showing what can be discovered when mathematics is used to investigate the natural world.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Filosofische aspecten</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Natuur</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vorm</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wiskunde</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Philosophie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Form (Philosophy)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nature (Aesthetics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bewegung</subfield><subfield code="0">(DE-588)4006311-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Natur</subfield><subfield code="0">(DE-588)4041358-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Populärwissenschaftliche Darstellung</subfield><subfield code="0">(DE-588)4140344-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prinzip der kleinsten Wirkung</subfield><subfield code="0">(DE-588)4229778-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gestalt</subfield><subfield code="0">(DE-588)4157135-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Minimalfläche</subfield><subfield code="0">(DE-588)4127814-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ästhetik</subfield><subfield code="0">(DE-588)4000626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ästhetik</subfield><subfield code="0">(DE-588)4000626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Natur</subfield><subfield code="0">(DE-588)4041358-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Natur</subfield><subfield code="0">(DE-588)4041358-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Prinzip der kleinsten Wirkung</subfield><subfield code="0">(DE-588)4229778-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Populärwissenschaftliche Darstellung</subfield><subfield code="0">(DE-588)4140344-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Minimalfläche</subfield><subfield code="0">(DE-588)4127814-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Bewegung</subfield><subfield code="0">(DE-588)4006311-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Gestalt</subfield><subfield code="0">(DE-588)4157135-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tromba, Anthony J.</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142684996</subfield><subfield code="4">aut</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007321997</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV010947880 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:01:30Z |
institution | BVB |
isbn | 0387979913 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007321997 |
oclc_num | 32548691 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-12 DE-92 DE-824 DE-29 DE-19 DE-BY-UBM DE-83 DE-11 |
owner_facet | DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-12 DE-92 DE-824 DE-29 DE-19 DE-BY-UBM DE-83 DE-11 |
physical | XIII, 330 S. zahlr. Ill. und graph. Darst. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Copernicus |
record_format | marc |
spelling | Hildebrandt, Stefan 1936-2015 Verfasser (DE-588)119219050 aut The parsimonious universe shape and form in the natural world Stefan Hildebrandt ; Anthony Tromba New York, NY Copernicus 1996 XIII, 330 S. zahlr. Ill. und graph. Darst. txt rdacontent n rdamedia nc rdacarrier Can one set of basic laws account for both the recurring themes and the infinite variety of nature's designs? When it comes to shape and form, does nature simply proceed in the easiest, most efficient way? Complete answers to these questions are likely never to be discovered. Still, down through the ages, the investigation of symmetry and regularity in nature has yielded some fascinating and surprising insights. Out of this inquiry comes a specific branch of mathematics - the calculus of variations - which explores questions of optimization: Is the igloo the optimal housing form for minimizing heat loss? Do bees use the least possible amount of wax when building their hives? In The Parsimonious Universe, Stefan Hildebrandt and Anthony Tromba invite readers to join the search for the mathematical underpinnings of natural shapes and form. Moving from ancient times to the nuclear age, the book looks at centuries of evidence that the physical world adheres to the principle of the economy of means - meaning that nature achieves efficiency by being rather stingy with the energy it expends. On almost every page can be found historical discussions, striking color illustrations, and examples ranging from atomic nuclei to soap bubbles to spirals and fractals. Without using technical language, Hildebrandt and Tromba open up an intriguing avenue of scientific inquiry to an uninitiated readership, showing what can be discovered when mathematics is used to investigate the natural world. Filosofische aspecten gtt Natuur gtt Vorm gtt Wiskunde gtt Mathematik Philosophie Calculus of variations Form (Philosophy) Motion Nature (Aesthetics) Bewegung (DE-588)4006311-2 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Variationsrechnung (DE-588)4062355-5 gnd rswk-swf Natur (DE-588)4041358-5 gnd rswk-swf Populärwissenschaftliche Darstellung (DE-588)4140344-7 gnd rswk-swf Prinzip der kleinsten Wirkung (DE-588)4229778-3 gnd rswk-swf Gestalt (DE-588)4157135-6 gnd rswk-swf Geschichte (DE-588)4020517-4 gnd rswk-swf Minimalfläche (DE-588)4127814-8 gnd rswk-swf Ästhetik (DE-588)4000626-8 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content Ästhetik (DE-588)4000626-8 s Natur (DE-588)4041358-5 s DE-604 Geometrie (DE-588)4020236-7 s Geschichte (DE-588)4020517-4 s Prinzip der kleinsten Wirkung (DE-588)4229778-3 s Populärwissenschaftliche Darstellung (DE-588)4140344-7 s Variationsrechnung (DE-588)4062355-5 s Minimalfläche (DE-588)4127814-8 s Bewegung (DE-588)4006311-2 s 1\p DE-604 Gestalt (DE-588)4157135-6 s 2\p DE-604 Tromba, Anthony J. 1943- Verfasser (DE-588)142684996 aut 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hildebrandt, Stefan 1936-2015 Tromba, Anthony J. 1943- The parsimonious universe shape and form in the natural world Filosofische aspecten gtt Natuur gtt Vorm gtt Wiskunde gtt Mathematik Philosophie Calculus of variations Form (Philosophy) Motion Nature (Aesthetics) Bewegung (DE-588)4006311-2 gnd Geometrie (DE-588)4020236-7 gnd Variationsrechnung (DE-588)4062355-5 gnd Natur (DE-588)4041358-5 gnd Populärwissenschaftliche Darstellung (DE-588)4140344-7 gnd Prinzip der kleinsten Wirkung (DE-588)4229778-3 gnd Gestalt (DE-588)4157135-6 gnd Geschichte (DE-588)4020517-4 gnd Minimalfläche (DE-588)4127814-8 gnd Ästhetik (DE-588)4000626-8 gnd |
subject_GND | (DE-588)4006311-2 (DE-588)4020236-7 (DE-588)4062355-5 (DE-588)4041358-5 (DE-588)4140344-7 (DE-588)4229778-3 (DE-588)4157135-6 (DE-588)4020517-4 (DE-588)4127814-8 (DE-588)4000626-8 (DE-588)4151278-9 |
title | The parsimonious universe shape and form in the natural world |
title_auth | The parsimonious universe shape and form in the natural world |
title_exact_search | The parsimonious universe shape and form in the natural world |
title_full | The parsimonious universe shape and form in the natural world Stefan Hildebrandt ; Anthony Tromba |
title_fullStr | The parsimonious universe shape and form in the natural world Stefan Hildebrandt ; Anthony Tromba |
title_full_unstemmed | The parsimonious universe shape and form in the natural world Stefan Hildebrandt ; Anthony Tromba |
title_short | The parsimonious universe |
title_sort | the parsimonious universe shape and form in the natural world |
title_sub | shape and form in the natural world |
topic | Filosofische aspecten gtt Natuur gtt Vorm gtt Wiskunde gtt Mathematik Philosophie Calculus of variations Form (Philosophy) Motion Nature (Aesthetics) Bewegung (DE-588)4006311-2 gnd Geometrie (DE-588)4020236-7 gnd Variationsrechnung (DE-588)4062355-5 gnd Natur (DE-588)4041358-5 gnd Populärwissenschaftliche Darstellung (DE-588)4140344-7 gnd Prinzip der kleinsten Wirkung (DE-588)4229778-3 gnd Gestalt (DE-588)4157135-6 gnd Geschichte (DE-588)4020517-4 gnd Minimalfläche (DE-588)4127814-8 gnd Ästhetik (DE-588)4000626-8 gnd |
topic_facet | Filosofische aspecten Natuur Vorm Wiskunde Mathematik Philosophie Calculus of variations Form (Philosophy) Motion Nature (Aesthetics) Bewegung Geometrie Variationsrechnung Natur Populärwissenschaftliche Darstellung Prinzip der kleinsten Wirkung Gestalt Geschichte Minimalfläche Ästhetik Einführung |
work_keys_str_mv | AT hildebrandtstefan theparsimoniousuniverseshapeandforminthenaturalworld AT trombaanthonyj theparsimoniousuniverseshapeandforminthenaturalworld |