On learning equal matrix languages:
Abstract: "We consider the learning problem for languages, called strongly bounded equal matrix languages, consisting of strings of the form [formula] where each a[supscript i] is a symbol and n[subscript i] is a nonnegative integer. The languages are defined in terms of certain parallel rewrit...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Tokyo, Japan
1989
|
Schriftenreihe: | Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report
452 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We consider the learning problem for languages, called strongly bounded equal matrix languages, consisting of strings of the form [formula] where each a[supscript i] is a symbol and n[subscript i] is a nonnegative integer. The languages are defined in terms of certain parallel rewriting grammars called equal matrix grammars. Also, the languages closely related to semilinear subsets of the Cartesian product of nonnegative integers We show that (1) the family of strongly bounded equal matrix languages is not learnable from positive examples, while there exists a meaningful subfamily which is learnable from positive examples, (2) given any teacher, called an ideal teacher, the subfamily is learnable in polynomial time of the size of inputs. |
Beschreibung: | 10 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010947099 | ||
003 | DE-604 | ||
005 | 20090617 | ||
007 | t | ||
008 | 960912s1989 |||| 00||| engod | ||
035 | |a (OCoLC)22643019 | ||
035 | |a (DE-599)BVBBV010947099 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Takada, Yuji |e Verfasser |4 aut | |
245 | 1 | 0 | |a On learning equal matrix languages |c by Y. Takada |
264 | 1 | |a Tokyo, Japan |c 1989 | |
300 | |a 10 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report |v 452 | |
520 | 3 | |a Abstract: "We consider the learning problem for languages, called strongly bounded equal matrix languages, consisting of strings of the form [formula] where each a[supscript i] is a symbol and n[subscript i] is a nonnegative integer. The languages are defined in terms of certain parallel rewriting grammars called equal matrix grammars. Also, the languages closely related to semilinear subsets of the Cartesian product of nonnegative integers | |
520 | 3 | |a We show that (1) the family of strongly bounded equal matrix languages is not learnable from positive examples, while there exists a meaningful subfamily which is learnable from positive examples, (2) given any teacher, called an ideal teacher, the subfamily is learnable in polynomial time of the size of inputs. | |
650 | 4 | |a Machine learning | |
830 | 0 | |a Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report |v 452 |w (DE-604)BV010923438 |9 452 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007321325 |
Datensatz im Suchindex
_version_ | 1804125433727287296 |
---|---|
any_adam_object | |
author | Takada, Yuji |
author_facet | Takada, Yuji |
author_role | aut |
author_sort | Takada, Yuji |
author_variant | y t yt |
building | Verbundindex |
bvnumber | BV010947099 |
ctrlnum | (OCoLC)22643019 (DE-599)BVBBV010947099 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01672nam a2200301 cb4500</leader><controlfield tag="001">BV010947099</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090617 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960912s1989 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)22643019</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010947099</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Takada, Yuji</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On learning equal matrix languages</subfield><subfield code="c">by Y. Takada</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Tokyo, Japan</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report</subfield><subfield code="v">452</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We consider the learning problem for languages, called strongly bounded equal matrix languages, consisting of strings of the form [formula] where each a[supscript i] is a symbol and n[subscript i] is a nonnegative integer. The languages are defined in terms of certain parallel rewriting grammars called equal matrix grammars. Also, the languages closely related to semilinear subsets of the Cartesian product of nonnegative integers</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">We show that (1) the family of strongly bounded equal matrix languages is not learnable from positive examples, while there exists a meaningful subfamily which is learnable from positive examples, (2) given any teacher, called an ideal teacher, the subfamily is learnable in polynomial time of the size of inputs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report</subfield><subfield code="v">452</subfield><subfield code="w">(DE-604)BV010923438</subfield><subfield code="9">452</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007321325</subfield></datafield></record></collection> |
id | DE-604.BV010947099 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:01:29Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007321325 |
oclc_num | 22643019 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 10 S. |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
record_format | marc |
series | Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report |
series2 | Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report |
spelling | Takada, Yuji Verfasser aut On learning equal matrix languages by Y. Takada Tokyo, Japan 1989 10 S. txt rdacontent n rdamedia nc rdacarrier Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report 452 Abstract: "We consider the learning problem for languages, called strongly bounded equal matrix languages, consisting of strings of the form [formula] where each a[supscript i] is a symbol and n[subscript i] is a nonnegative integer. The languages are defined in terms of certain parallel rewriting grammars called equal matrix grammars. Also, the languages closely related to semilinear subsets of the Cartesian product of nonnegative integers We show that (1) the family of strongly bounded equal matrix languages is not learnable from positive examples, while there exists a meaningful subfamily which is learnable from positive examples, (2) given any teacher, called an ideal teacher, the subfamily is learnable in polynomial time of the size of inputs. Machine learning Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report 452 (DE-604)BV010923438 452 |
spellingShingle | Takada, Yuji On learning equal matrix languages Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report Machine learning |
title | On learning equal matrix languages |
title_auth | On learning equal matrix languages |
title_exact_search | On learning equal matrix languages |
title_full | On learning equal matrix languages by Y. Takada |
title_fullStr | On learning equal matrix languages by Y. Takada |
title_full_unstemmed | On learning equal matrix languages by Y. Takada |
title_short | On learning equal matrix languages |
title_sort | on learning equal matrix languages |
topic | Machine learning |
topic_facet | Machine learning |
volume_link | (DE-604)BV010923438 |
work_keys_str_mv | AT takadayuji onlearningequalmatrixlanguages |