Electron physics of vacuum and gaseous devices:
For over fifty years, the electron tube was the dominant component in electronic devices used in communications, industry, and science. By the 1960s, however, the transistor and solid-state technology appeared to render the quaint glowing tubes obsolete
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Wiley
1996
|
Schriftenreihe: | A Wiley-Interscience publication
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | For over fifty years, the electron tube was the dominant component in electronic devices used in communications, industry, and science. By the 1960s, however, the transistor and solid-state technology appeared to render the quaint glowing tubes obsolete However, the electron tube has continued as the component of choice in a wide range of important devices and applications where semiconductors simply will not do: televisions, electron microscopes, spectrometers, X-ray equipment, accelerators, devices using freely charged particles, and microwave devices, to name a few This introduction to electron physics of free particles illuminates the present-day diversity of applications as well as likely future developments in electron tube technology. Miroslav Sedlacek employs hundreds of illustrations to support his text, describes the specifics of devices and techniques, and examines the role of electron tubes in many fields - not the least of which, ironically, is the production of integrated circuits |
Beschreibung: | XVI, 538 S. Ill., graph. Darst. |
ISBN: | 0471145270 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV010858526 | ||
003 | DE-604 | ||
005 | 20120516 | ||
007 | t | ||
008 | 960717s1996 ad|| |||| 00||| eng d | ||
020 | |a 0471145270 |9 0-471-14527-0 | ||
035 | |a (OCoLC)33245119 | ||
035 | |a (DE-599)BVBBV010858526 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-20 |a DE-703 |a DE-M347 |a DE-83 | ||
050 | 0 | |a QC793.5.E62 | |
082 | 0 | |a 537.5 |2 20 | |
084 | |a UH 6300 |0 (DE-625)159498: |2 rvk | ||
084 | |a ELT 380f |2 stub | ||
084 | |a PHY 322d |2 stub | ||
100 | 1 | |a Sedlaček, Miroslav |e Verfasser |4 aut | |
245 | 1 | 0 | |a Electron physics of vacuum and gaseous devices |c Miroslav Sedlaček |
264 | 1 | |a New York [u.a.] |b Wiley |c 1996 | |
300 | |a XVI, 538 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a A Wiley-Interscience publication | |
520 | 3 | |a For over fifty years, the electron tube was the dominant component in electronic devices used in communications, industry, and science. By the 1960s, however, the transistor and solid-state technology appeared to render the quaint glowing tubes obsolete | |
520 | |a However, the electron tube has continued as the component of choice in a wide range of important devices and applications where semiconductors simply will not do: televisions, electron microscopes, spectrometers, X-ray equipment, accelerators, devices using freely charged particles, and microwave devices, to name a few | ||
520 | |a This introduction to electron physics of free particles illuminates the present-day diversity of applications as well as likely future developments in electron tube technology. Miroslav Sedlacek employs hundreds of illustrations to support his text, describes the specifics of devices and techniques, and examines the role of electron tubes in many fields - not the least of which, ironically, is the production of integrated circuits | ||
650 | 4 | |a Electronic systems | |
650 | 4 | |a Electrons | |
650 | 4 | |a Electrooptical devices | |
650 | 4 | |a Glow discharges | |
650 | 4 | |a Vacuum technology | |
650 | 0 | 7 | |a Elektronenoptik |0 (DE-588)4151879-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektronenröhre |0 (DE-588)4014330-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektronenbeschleuniger |0 (DE-588)4201333-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektronenröhre |0 (DE-588)4014330-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Elektronenoptik |0 (DE-588)4151879-2 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Elektronenbeschleuniger |0 (DE-588)4201333-1 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007257263&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007257263 |
Datensatz im Suchindex
_version_ | 1804125343961841664 |
---|---|
adam_text | ELECTRON PHYSICS OF VACUUM AND GASEOUS DEVICES MIROSLAV SEDLACEK ROYAL
INSTITUTE OF TECHNOLOGY STOCKHOLM, SWEDEN A WILEY-LNTERSCIENCE
PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER / BRISBANE /
TORONTO / SINGAPORE CONTENTS PREFACE XI INTRODUCTION XIII 1. FIELDS AND
ORBITS 1 1.1. ELECTROMAGNETIC FIELD / 2 1.1.1. INTRODUCTION / 2 1.1.2.
ELECTROSTATICS / 2 1.1.3. MAGNETOSTATIC / 4 1.1.4. WAVE EQUATION / 5
1.2. NUMERICAL METHODS / 7 1.2.1. FINITE DIFFERENCE METHOD / 11 1.2.2.
FINITE ELEMENT METHOD / 14 1.2.3. SOLUTION OF SIMULTANEOUS SYSTEMS / 15
1.2.4. COMPARISON BETWEEN FDM AND FEM / 22 1.3. PARTICLE ORBITS / 25
1.3.1. EQUATION OF MOTION / 25 1.3.2. NUMERICAL ORBIT COMPUTATIONS / 28
1.4. STEP-BY-STEP SIMULATION OF TIME-VARIABLE PROCESSES / 29 V CONTENTS
2. STATISTICAL MECHANICS AND ELECTRON EMISSION 2.1. STATISTICAL
MECHANICS / 38 2.2. ELECTRON EMISSION / 54 2.2.1. THERMIONIC EMISSION /
61 2.2.2. THE INFLUENCE OF ELECTRIC FIELD / 64 2.2.3. PHOTOEMISSION / 69
2.2.4. SECONDARY EMISSION / 71 2.2.5. FIELD EMISSION / 73 2.2.6. CATHODE
MATERIALS / 74 3. CHARGED-PARTICLE DYNAMICS 3.1. INTRODUCTION / 82 3.2.
UNIFORM ELECTRIC AND MAGNETIC FIELD / 83 3.3. ELECTRON TUBES, TRIODE /
87 3.4. TIME-VARIABLE ELECTRIC FIELD / 90 4. ELECTRON OPTICS 4.1.
INTRODUCTION / 98 4.2. PARAXIAL THEORY FOR ROTATIONALLY SYMMETRIE
ELECTRON LENSES / 102 4.2.1. ORBIT EQUATION IN ROTATIONALLY SYMMETRIE
FIELDS / 102 4.2.2. POWER SERIES FOR THE ELECTROSTATIC AND MAGNETOSTATIC
FIELD / 105 4.2.3. PARAXIAL APPROXIMATION OF THE ORBIT EQUATION / 107
4.2.4. IMAGING LAWS / 109 4.2.5. MATRIX FORMULATION OF THE PARAXIAL
ORBIT EQUATION / 116 4.3. ELECTRIC AND MAGNETIC ROTATIONALLY SYMMETRIC
LENSES / 117 4.3.1. ELECTROSTATIC LENSES / 118 4.3.2. MAGNETOSTATIC
LENSES / 124 4.4. ABERRATIONS IN ROTATIONALLY SYMMETRIC LENSES / 129
4.4.1. PHYSICAL DESCRIPTION OF ABERRATIONS / 129 4.4.2. CALCULATION OF
GEOMETRICAL ABERRATION COEFFICIENTS / 130 4.4.3. CHROMATIC ABERRATION /
137 4.4.4. MECHANICAL IMAGE ERRORS / 138 4.4.5. NUMERICAL METHODS FOR
LENS AND ABERRATION COMPUTATION / 139 4.4.6. FIGHTING THE ABERRATIONS /
141 4.5. QUADRUPOLE AND MULTIPOLE LENSES / 143 4.6. ELECTRON OPTICAL
MIRRORS / 150 4.7. DEFLECTION OF PARTICLE BEAMS / 152 4.7.1. ELECTRIC
DEFLECTION / 152 4.7.2. MAGNETIC DEFLECTION / 154 4.7.3. DEFLECTION
ABERRATIONS / 155 4.7.4. ELECTRON-OPTICAL PRISMS / 157 4.8. THERMAL
VELOCITY EFFECTS / 162 4.8.1. CATHODE IMAGING / 162 4.8.2. CHARGE
DENSITY EFFECTS / 164 5. ELECTRON-OPTICAL TUBES AND DEVICES 5.1.
ELECTRON TUBES / 172 5.1.1. VACUUM MICROELECTRONICS / 172 5.1.2.
HIGH-POWER AMPLIFYING AND TRANSMITTING TUBES / 177 5.1.3. SECONDARY
ELECTRON MULTIPLIERS / 180 5.1.4. IMAGE CONVERTERS AND INTENSIFIERS /
188 5.1.5. SIGNAL-IMAGE AND IMAGE-SIGNAL CONVERTER TUBES / 192 5.2.
ELECTRON-OPTICAL DEVICES / 203 5.2.1. ELECTRON MICROSCOPES / 203 5.2.2.
SPECTROMETERS / 214 5.2.3. ELECTRON-BEAM TECHNOLOGY / 223 5.2.4.
ELECTRON-BEAM LITHOGRAPHY / 225 6. HIGH-PERVEANCE ELECTRON BEAMS 6.1.
INTRODUCTION / 230 6.2. HIGH-PERVEANCE ELECTRON GUNS / 231 6.2.1.
PIERCE S METHOD / 231 6.2.2. CONSTRUCTION OF HIGH-PERVEANCE ELECTRON
GUNS / 233 6.3. MAGNETIC CONFINEMENT OF ELECTRON BEAMS / 236 6.3.1. BEAM
SPREADING / 236 6.3.2. BRILLOUIN S FOCUSING / 240 6.3.3. CONFINED FLOW /
246 6.3.4. BALANCED FLOW / 249 6.3.5. PERIODIC FOCUSING / 253 6.4.
COLLECTOR / 255 7. MICROWAVE TUBES 7.1. INTRODUCTION / 260 7.2.
MICROWAVE TRIODES / 261 7.3. LINEAR BEAM MICROWAVE TUBES / 264 7.3.1.
INTRODUCTION / 264 7.3.2. KLYSTRON / 265 7 3.3. TRAVELING WAVE TUBE /
290 7 3.4. BWO TUBES / 294 CONTENTS 7.4. CROSSED-FIELD MICROWAVE TUBES /
299 7.4.1. INTRODUCTION / 299 7.4.2. MAGNETRON / 300 7.4.3. CFATUBE /
312 7.5. THEGYROTRON /313 7.6. MICROWAVE TUBES IN DEVELOPMENT /318
7.6.1. UBITRON /318 7.6.2. PENIOTRON / 320 7.6.3. HIGH-POWER MICROWAVE
TUBES / 322 8. ACCELERATORS 329 8.1. INTRODUCTION /330 8.2. DC
ACCELERATORS / 334 8.3. ORBITAL STABILITY / 337 8.3.1. BETATRON
OSCILLATIONS / 337 8.3.2. STRONG FOCUSING / 340 8.4. PHASE STABILITY /
342 8.4.1. SYNCHROTRON OSCILLATIONS IN CYCLIC ACCELERATORS / 342 8.4.2.
PHASE STABILITY IN LINACS / 349 8.5. CYCLIC ACCELERATORS / 349 8.5.1.
CYCLOTRON / 349 8.5.2. SYNCHROCYCLOTRON / 353 8.5.3. SYNCHROTRON / 353
8.5.4. MICROTRON / 357 8.5.5. BETATRON / 362 8.6. LINEAR ACCELERATORS /
364 8.6.1. PROTON LINAC / 364 8.6.2. ELECTRON LINAC / 366 8.6.3.
RFQ-RADIO-FREQUENCY QUADRUPOLE /370 8.7. STORAGE RINGS /371 8.7.1. BEAM
TRANSPORT / 371 8.7.2. STORAGE RINGS AND COLLIDERS / 374 8.7.3.
ELECTRON, STOCHASTIC, AND SYNCHROTON COOLING / 377 8.7.4. SYNCHROTON
RADIATION AND FREE ELECTRON LASER / 380 8.8. PERSPECTIVE / 383 9. GAS
DISCHARGES 385 9.1. INTRODUCTION / 386 9.2. IONIZATION / 389 CONTENTS IX
9.3. FIELD ENHANCED IONIZATION / 391 9.4. GAS DISCHARGES / 395 9.4.1.
UNSUSTAINED DISCHARGE / 395 9.4.2. GLOW DISCHARGE / 396 9.4.3. ARC
DISCHARGE / 399 9.5. DIFFUSION, MOBILITY, CONDUCTIVITY, AND
RECOMBINATION / 400 9.6. PLASMA / 404 10. GAS DISCHARGE TUBES AND
DEVICES 409 10.1. INTRODUCTION /410 10.2. UNSUSTAINED DISCHARGE DEVICES
/ 411 10.2.1. IONIZATION CHAMBER /411 10.2.2. PROPORTIONAL AND GEIGER
COUNTERS /411 10.3. GLOW DISCHARGE TUBES /412 10.3.1. GAS DISCHARGE
LIGHT SOURCES /412 10.3.2. RADAR GAS SWITCHING DIODES / 416 10.3.3. GAS
DISCHARGE DISPLAYS / 417 10.4. ARC DISCHARGE TUBES / 418 10.4.1.
OVERVOLTAGE SPARK GAPS / 418 10.4.2. ELECTRON FLASH TUBES / 418 10.4.3.
ARC DISCHARGE LAMPS / 419 10.4.4. IGNITRON /419 10.4.5. HYDROGEN
THYRATRON / 420 10.4.6. CROSSATRON / 422 10.4.7. SPARK GAP / 423 10.5.
GAS LASERS / 424 10.5.1. NEUTRAL ATOM LASER / 425 10.5.2. ION LASERS /
427 10.5.3. MOLECULAR LASERS / 428 10.5.4. EXCIMER LASER / 429 10.6. ION
SOURCES / 429 10.7. GAS DISCHARGES AND SURFACE PROCESSING / 432 10.7.1.
SPUTTERING / 433 10.7.2. ION ETCHING / 436 10.7.3. ION IMPLANTATION /
437 10.8. PLASMA METALLURGY AND PLASMA CHEMISTRY /437 10.8.1. PLASMA
TORCH / 438 10.8.2. PLASMA IN METALLURGY / 439 10.8.3. PLASMA CHEMISTRY
/ 440 11. VACUUM TECHNOLOGY 443 11.1. INTRODUCTION / 444 11.2. VACUUM
PHYSICS / 444 11.3. VACUUM PUMPS / 449 CONTENTS 11.3.1. ROUGHING PUMPS /
449 11.3.2. HIGH-VACUUM PUMPS / 459 11.4. MEASUREMENT / 459 11.4.1
PIRANI GAUGE / 460 11.4.2. PIEZORESISTIVE PRESSURE TRANSDUCER / 460
11.4.3. IONIZATION VACUUM GAUGE / 461 11.4.4. RESIDUAL GAS ANALYSIS /
462 11.5. LEAKS AND LEAK DETECTORS / 463 11.6. VACUUM COMPONENTS / 464
11.6.1. FILTERS, BAFFLES AND TRAPS / 464 11.6.2. CONSTRUCTION COMPONENTS
AND VALVES / 465 11.7. VACUUM MATERIALS / 468 11.7.1. METALS / 468
11.7.2. GLASS AND CERAMIC / 469 11.7.3. ORGANIC MATERIALS / 469 11.8.
JOINING TECHNIQUE / 469 APPENDICES A. ENERGY DISTRIBUTION OF FERMIONS /
472 B. LIOUVILLE S THEOREM / 473 * BEAM LOADING ADMITTANCE / 474 D.
SLOW-WAVE STRUCTURES / 476 E. SMALL-SIGNAL TWT THEORY / 480 F PHASE AND
GROUP VELOCITY / 489 G. RELATIVISTIC FORMULAE / 490 H. BEAM TRANSPORT
MATRICES / 491 K. HISTORICAL REFERENCES / 494 L. NOBEL PRIZES RELEVANT
TO ELECTRON PHYSICS / 502 M. LANGMUIR-BLODGETT FACTOR / 505 N. FREQUENCY
BANDS / 507 SYMBOLS USED IN TEXT / 508 LIST OF TABLES /511 COMMON
ABBREVIATIONS /512 PHYSICAL CONSTANTS /514 BIBLIOGRAPHY /515 NAME INDEX
SUBJECT INDEX
|
any_adam_object | 1 |
author | Sedlaček, Miroslav |
author_facet | Sedlaček, Miroslav |
author_role | aut |
author_sort | Sedlaček, Miroslav |
author_variant | m s ms |
building | Verbundindex |
bvnumber | BV010858526 |
callnumber-first | Q - Science |
callnumber-label | QC793 |
callnumber-raw | QC793.5.E62 |
callnumber-search | QC793.5.E62 |
callnumber-sort | QC 3793.5 E62 |
callnumber-subject | QC - Physics |
classification_rvk | UH 6300 |
classification_tum | ELT 380f PHY 322d |
ctrlnum | (OCoLC)33245119 (DE-599)BVBBV010858526 |
dewey-full | 537.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 537 - Electricity and electronics |
dewey-raw | 537.5 |
dewey-search | 537.5 |
dewey-sort | 3537.5 |
dewey-tens | 530 - Physics |
discipline | Physik Elektrotechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02891nam a2200541 c 4500</leader><controlfield tag="001">BV010858526</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120516 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960717s1996 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471145270</subfield><subfield code="9">0-471-14527-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)33245119</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010858526</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC793.5.E62</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">537.5</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 6300</subfield><subfield code="0">(DE-625)159498:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 380f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 322d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sedlaček, Miroslav</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electron physics of vacuum and gaseous devices</subfield><subfield code="c">Miroslav Sedlaček</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 538 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Wiley-Interscience publication</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">For over fifty years, the electron tube was the dominant component in electronic devices used in communications, industry, and science. By the 1960s, however, the transistor and solid-state technology appeared to render the quaint glowing tubes obsolete</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">However, the electron tube has continued as the component of choice in a wide range of important devices and applications where semiconductors simply will not do: televisions, electron microscopes, spectrometers, X-ray equipment, accelerators, devices using freely charged particles, and microwave devices, to name a few</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This introduction to electron physics of free particles illuminates the present-day diversity of applications as well as likely future developments in electron tube technology. Miroslav Sedlacek employs hundreds of illustrations to support his text, describes the specifics of devices and techniques, and examines the role of electron tubes in many fields - not the least of which, ironically, is the production of integrated circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrooptical devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glow discharges</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vacuum technology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektronenoptik</subfield><subfield code="0">(DE-588)4151879-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektronenröhre</subfield><subfield code="0">(DE-588)4014330-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektronenbeschleuniger</subfield><subfield code="0">(DE-588)4201333-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektronenröhre</subfield><subfield code="0">(DE-588)4014330-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elektronenoptik</subfield><subfield code="0">(DE-588)4151879-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Elektronenbeschleuniger</subfield><subfield code="0">(DE-588)4201333-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007257263&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007257263</subfield></datafield></record></collection> |
id | DE-604.BV010858526 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:00:04Z |
institution | BVB |
isbn | 0471145270 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007257263 |
oclc_num | 33245119 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-20 DE-703 DE-M347 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-20 DE-703 DE-M347 DE-83 |
physical | XVI, 538 S. Ill., graph. Darst. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Wiley |
record_format | marc |
series2 | A Wiley-Interscience publication |
spelling | Sedlaček, Miroslav Verfasser aut Electron physics of vacuum and gaseous devices Miroslav Sedlaček New York [u.a.] Wiley 1996 XVI, 538 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier A Wiley-Interscience publication For over fifty years, the electron tube was the dominant component in electronic devices used in communications, industry, and science. By the 1960s, however, the transistor and solid-state technology appeared to render the quaint glowing tubes obsolete However, the electron tube has continued as the component of choice in a wide range of important devices and applications where semiconductors simply will not do: televisions, electron microscopes, spectrometers, X-ray equipment, accelerators, devices using freely charged particles, and microwave devices, to name a few This introduction to electron physics of free particles illuminates the present-day diversity of applications as well as likely future developments in electron tube technology. Miroslav Sedlacek employs hundreds of illustrations to support his text, describes the specifics of devices and techniques, and examines the role of electron tubes in many fields - not the least of which, ironically, is the production of integrated circuits Electronic systems Electrons Electrooptical devices Glow discharges Vacuum technology Elektronenoptik (DE-588)4151879-2 gnd rswk-swf Elektronenröhre (DE-588)4014330-2 gnd rswk-swf Elektronenbeschleuniger (DE-588)4201333-1 gnd rswk-swf Elektronenröhre (DE-588)4014330-2 s DE-604 Elektronenoptik (DE-588)4151879-2 s Elektronenbeschleuniger (DE-588)4201333-1 s GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007257263&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Sedlaček, Miroslav Electron physics of vacuum and gaseous devices Electronic systems Electrons Electrooptical devices Glow discharges Vacuum technology Elektronenoptik (DE-588)4151879-2 gnd Elektronenröhre (DE-588)4014330-2 gnd Elektronenbeschleuniger (DE-588)4201333-1 gnd |
subject_GND | (DE-588)4151879-2 (DE-588)4014330-2 (DE-588)4201333-1 |
title | Electron physics of vacuum and gaseous devices |
title_auth | Electron physics of vacuum and gaseous devices |
title_exact_search | Electron physics of vacuum and gaseous devices |
title_full | Electron physics of vacuum and gaseous devices Miroslav Sedlaček |
title_fullStr | Electron physics of vacuum and gaseous devices Miroslav Sedlaček |
title_full_unstemmed | Electron physics of vacuum and gaseous devices Miroslav Sedlaček |
title_short | Electron physics of vacuum and gaseous devices |
title_sort | electron physics of vacuum and gaseous devices |
topic | Electronic systems Electrons Electrooptical devices Glow discharges Vacuum technology Elektronenoptik (DE-588)4151879-2 gnd Elektronenröhre (DE-588)4014330-2 gnd Elektronenbeschleuniger (DE-588)4201333-1 gnd |
topic_facet | Electronic systems Electrons Electrooptical devices Glow discharges Vacuum technology Elektronenoptik Elektronenröhre Elektronenbeschleuniger |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007257263&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT sedlacekmiroslav electronphysicsofvacuumandgaseousdevices |