Strongly polynomial Auction algorithms for shortest paths:
Abstract: "An Auction algorithm for shortest paths was recently proposed by Bertsekas (1991). Under the assumption that each cycle of the graph has a positive length, that the forward star of each node is not empty and that the input data are integer, a shortest path tree is returned in pseudop...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Pisa
1991
|
Schriftenreihe: | Università degli Studi <Pisa> / Dipartimento di Informatica: Technical report
1991,19 |
Schlagworte: | |
Zusammenfassung: | Abstract: "An Auction algorithm for shortest paths was recently proposed by Bertsekas (1991). Under the assumption that each cycle of the graph has a positive length, that the forward star of each node is not empty and that the input data are integer, a shortest path tree is returned in pseudopolynomial time. In this work, we propose two new versions of Bertsekas algorithm, which generalize the auction approach for shortest paths. In addition, they are strongly polynomial. In fact, the first algorithm runs in O(m²) time and the second one in O(mn) time, where m and n are the number of the edges and the number of the nodes of the graph, respectively." |
Beschreibung: | 12 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010848073 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 960712s1991 |||| 00||| engod | ||
035 | |a (OCoLC)27332735 | ||
035 | |a (DE-599)BVBBV010848073 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Pallottino, Stefano |e Verfasser |4 aut | |
245 | 1 | 0 | |a Strongly polynomial Auction algorithms for shortest paths |c S. Pallottino ; M. G. Scutellà |
264 | 1 | |a Pisa |c 1991 | |
300 | |a 12 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Università degli Studi <Pisa> / Dipartimento di Informatica: Technical report |v 1991,19 | |
520 | 3 | |a Abstract: "An Auction algorithm for shortest paths was recently proposed by Bertsekas (1991). Under the assumption that each cycle of the graph has a positive length, that the forward star of each node is not empty and that the input data are integer, a shortest path tree is returned in pseudopolynomial time. In this work, we propose two new versions of Bertsekas algorithm, which generalize the auction approach for shortest paths. In addition, they are strongly polynomial. In fact, the first algorithm runs in O(m²) time and the second one in O(mn) time, where m and n are the number of the edges and the number of the nodes of the graph, respectively." | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Auctions |x Mathematical models | |
700 | 1 | |a Scutellà, Maria Grazia |e Verfasser |4 aut | |
810 | 2 | |a Dipartimento di Informatica: Technical report |t Università degli Studi <Pisa> |v 1991,19 |w (DE-604)BV010841375 |9 1991,19 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007250722 |
Datensatz im Suchindex
_version_ | 1804125333986738176 |
---|---|
any_adam_object | |
author | Pallottino, Stefano Scutellà, Maria Grazia |
author_facet | Pallottino, Stefano Scutellà, Maria Grazia |
author_role | aut aut |
author_sort | Pallottino, Stefano |
author_variant | s p sp m g s mg mgs |
building | Verbundindex |
bvnumber | BV010848073 |
ctrlnum | (OCoLC)27332735 (DE-599)BVBBV010848073 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01747nam a2200325 cb4500</leader><controlfield tag="001">BV010848073</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960712s1991 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)27332735</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010848073</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pallottino, Stefano</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strongly polynomial Auction algorithms for shortest paths</subfield><subfield code="c">S. Pallottino ; M. G. Scutellà</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Pisa</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Università degli Studi <Pisa> / Dipartimento di Informatica: Technical report</subfield><subfield code="v">1991,19</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "An Auction algorithm for shortest paths was recently proposed by Bertsekas (1991). Under the assumption that each cycle of the graph has a positive length, that the forward star of each node is not empty and that the input data are integer, a shortest path tree is returned in pseudopolynomial time. In this work, we propose two new versions of Bertsekas algorithm, which generalize the auction approach for shortest paths. In addition, they are strongly polynomial. In fact, the first algorithm runs in O(m²) time and the second one in O(mn) time, where m and n are the number of the edges and the number of the nodes of the graph, respectively."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Auctions</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scutellà, Maria Grazia</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Dipartimento di Informatica: Technical report</subfield><subfield code="t">Università degli Studi <Pisa></subfield><subfield code="v">1991,19</subfield><subfield code="w">(DE-604)BV010841375</subfield><subfield code="9">1991,19</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007250722</subfield></datafield></record></collection> |
id | DE-604.BV010848073 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:59:54Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007250722 |
oclc_num | 27332735 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 12 S. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
record_format | marc |
series2 | Università degli Studi <Pisa> / Dipartimento di Informatica: Technical report |
spelling | Pallottino, Stefano Verfasser aut Strongly polynomial Auction algorithms for shortest paths S. Pallottino ; M. G. Scutellà Pisa 1991 12 S. txt rdacontent n rdamedia nc rdacarrier Università degli Studi <Pisa> / Dipartimento di Informatica: Technical report 1991,19 Abstract: "An Auction algorithm for shortest paths was recently proposed by Bertsekas (1991). Under the assumption that each cycle of the graph has a positive length, that the forward star of each node is not empty and that the input data are integer, a shortest path tree is returned in pseudopolynomial time. In this work, we propose two new versions of Bertsekas algorithm, which generalize the auction approach for shortest paths. In addition, they are strongly polynomial. In fact, the first algorithm runs in O(m²) time and the second one in O(mn) time, where m and n are the number of the edges and the number of the nodes of the graph, respectively." Mathematisches Modell Algorithms Auctions Mathematical models Scutellà, Maria Grazia Verfasser aut Dipartimento di Informatica: Technical report Università degli Studi <Pisa> 1991,19 (DE-604)BV010841375 1991,19 |
spellingShingle | Pallottino, Stefano Scutellà, Maria Grazia Strongly polynomial Auction algorithms for shortest paths Mathematisches Modell Algorithms Auctions Mathematical models |
title | Strongly polynomial Auction algorithms for shortest paths |
title_auth | Strongly polynomial Auction algorithms for shortest paths |
title_exact_search | Strongly polynomial Auction algorithms for shortest paths |
title_full | Strongly polynomial Auction algorithms for shortest paths S. Pallottino ; M. G. Scutellà |
title_fullStr | Strongly polynomial Auction algorithms for shortest paths S. Pallottino ; M. G. Scutellà |
title_full_unstemmed | Strongly polynomial Auction algorithms for shortest paths S. Pallottino ; M. G. Scutellà |
title_short | Strongly polynomial Auction algorithms for shortest paths |
title_sort | strongly polynomial auction algorithms for shortest paths |
topic | Mathematisches Modell Algorithms Auctions Mathematical models |
topic_facet | Mathematisches Modell Algorithms Auctions Mathematical models |
volume_link | (DE-604)BV010841375 |
work_keys_str_mv | AT pallottinostefano stronglypolynomialauctionalgorithmsforshortestpaths AT scutellamariagrazia stronglypolynomialauctionalgorithmsforshortestpaths |