A proof of Higman's Lemma by open induction:

Abstract: "We use Raoult's principle of open induction to give a constructive proof of Higman's Lemma. In contrast to previous proofs, our proof directly uses the property that every infinite sequence has an infinite ordered subsequence. This straightens the inductive argument at the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Geser, Alfons (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Passau 1996
Schriftenreihe:Universität <Passau> / Fakultät für Mathematik und Informatik: MIP 1996,06
Schlagworte:
Zusammenfassung:Abstract: "We use Raoult's principle of open induction to give a constructive proof of Higman's Lemma. In contrast to previous proofs, our proof directly uses the property that every infinite sequence has an infinite ordered subsequence. This straightens the inductive argument at the cost of a more complex order."
Beschreibung:10, 4 S.