A proof of Higman's Lemma by open induction:
Abstract: "We use Raoult's principle of open induction to give a constructive proof of Higman's Lemma. In contrast to previous proofs, our proof directly uses the property that every infinite sequence has an infinite ordered subsequence. This straightens the inductive argument at the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Passau
1996
|
Schriftenreihe: | Universität <Passau> / Fakultät für Mathematik und Informatik: MIP
1996,06 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We use Raoult's principle of open induction to give a constructive proof of Higman's Lemma. In contrast to previous proofs, our proof directly uses the property that every infinite sequence has an infinite ordered subsequence. This straightens the inductive argument at the cost of a more complex order." |
Beschreibung: | 10, 4 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010769574 | ||
003 | DE-604 | ||
007 | t| | ||
008 | 960523s1996 xx |||| 00||| eng d | ||
035 | |a (OCoLC)36067070 | ||
035 | |a (DE-599)BVBBV010769574 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-154 |a DE-739 |a DE-12 |a DE-91G |a DE-384 |a DE-634 | ||
100 | 1 | |a Geser, Alfons |e Verfasser |4 aut | |
245 | 1 | 0 | |a A proof of Higman's Lemma by open induction |c A. Geser |
264 | 1 | |a Passau |c 1996 | |
300 | |a 10, 4 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Universität <Passau> / Fakultät für Mathematik und Informatik: MIP |v 1996,06 | |
520 | 3 | |a Abstract: "We use Raoult's principle of open induction to give a constructive proof of Higman's Lemma. In contrast to previous proofs, our proof directly uses the property that every infinite sequence has an infinite ordered subsequence. This straightens the inductive argument at the cost of a more complex order." | |
650 | 4 | |a Induction (Logic) | |
650 | 4 | |a Proof theory | |
650 | 4 | |a Sequences (Mathematics) | |
650 | 0 | 7 | |a Theoretische Informatik |0 (DE-588)4196735-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Informatik |0 (DE-588)4026894-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Theoretische Informatik |0 (DE-588)4196735-5 |D s |
689 | 0 | 1 | |a Informatik |0 (DE-588)4026894-9 |D s |
689 | 0 | 2 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |5 DE-604 | |
810 | 2 | |a Fakultät für Mathematik und Informatik: MIP |t Universität <Passau> |v 1996,06 |w (DE-604)BV000905393 |9 1996,06 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-007192000 |
Datensatz im Suchindex
_version_ | 1820882317638369280 |
---|---|
adam_text | |
any_adam_object | |
author | Geser, Alfons |
author_facet | Geser, Alfons |
author_role | aut |
author_sort | Geser, Alfons |
author_variant | a g ag |
building | Verbundindex |
bvnumber | BV010769574 |
classification_rvk | SS 5600 |
ctrlnum | (OCoLC)36067070 (DE-599)BVBBV010769574 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV010769574</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">960523s1996 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)36067070</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010769574</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-154</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Geser, Alfons</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A proof of Higman's Lemma by open induction</subfield><subfield code="c">A. Geser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Passau</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10, 4 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Universität <Passau> / Fakultät für Mathematik und Informatik: MIP</subfield><subfield code="v">1996,06</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We use Raoult's principle of open induction to give a constructive proof of Higman's Lemma. In contrast to previous proofs, our proof directly uses the property that every infinite sequence has an infinite ordered subsequence. This straightens the inductive argument at the cost of a more complex order."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Induction (Logic)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proof theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequences (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theoretische Informatik</subfield><subfield code="0">(DE-588)4196735-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Theoretische Informatik</subfield><subfield code="0">(DE-588)4196735-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Fakultät für Mathematik und Informatik: MIP</subfield><subfield code="t">Universität <Passau></subfield><subfield code="v">1996,06</subfield><subfield code="w">(DE-604)BV000905393</subfield><subfield code="9">1996,06</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007192000</subfield></datafield></record></collection> |
id | DE-604.BV010769574 |
illustrated | Not Illustrated |
indexdate | 2025-01-10T17:04:59Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007192000 |
oclc_num | 36067070 |
open_access_boolean | |
owner | DE-154 DE-739 DE-12 DE-91G DE-BY-TUM DE-384 DE-634 |
owner_facet | DE-154 DE-739 DE-12 DE-91G DE-BY-TUM DE-384 DE-634 |
physical | 10, 4 S. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
record_format | marc |
series2 | Universität <Passau> / Fakultät für Mathematik und Informatik: MIP |
spelling | Geser, Alfons Verfasser aut A proof of Higman's Lemma by open induction A. Geser Passau 1996 10, 4 S. txt rdacontent n rdamedia nc rdacarrier Universität <Passau> / Fakultät für Mathematik und Informatik: MIP 1996,06 Abstract: "We use Raoult's principle of open induction to give a constructive proof of Higman's Lemma. In contrast to previous proofs, our proof directly uses the property that every infinite sequence has an infinite ordered subsequence. This straightens the inductive argument at the cost of a more complex order." Induction (Logic) Proof theory Sequences (Mathematics) Theoretische Informatik (DE-588)4196735-5 gnd rswk-swf Informatik (DE-588)4026894-9 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Theoretische Informatik (DE-588)4196735-5 s Informatik (DE-588)4026894-9 s Mathematik (DE-588)4037944-9 s DE-604 Fakultät für Mathematik und Informatik: MIP Universität <Passau> 1996,06 (DE-604)BV000905393 1996,06 |
spellingShingle | Geser, Alfons A proof of Higman's Lemma by open induction Induction (Logic) Proof theory Sequences (Mathematics) Theoretische Informatik (DE-588)4196735-5 gnd Informatik (DE-588)4026894-9 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4196735-5 (DE-588)4026894-9 (DE-588)4037944-9 |
title | A proof of Higman's Lemma by open induction |
title_auth | A proof of Higman's Lemma by open induction |
title_exact_search | A proof of Higman's Lemma by open induction |
title_full | A proof of Higman's Lemma by open induction A. Geser |
title_fullStr | A proof of Higman's Lemma by open induction A. Geser |
title_full_unstemmed | A proof of Higman's Lemma by open induction A. Geser |
title_short | A proof of Higman's Lemma by open induction |
title_sort | a proof of higman s lemma by open induction |
topic | Induction (Logic) Proof theory Sequences (Mathematics) Theoretische Informatik (DE-588)4196735-5 gnd Informatik (DE-588)4026894-9 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | Induction (Logic) Proof theory Sequences (Mathematics) Theoretische Informatik Informatik Mathematik |
volume_link | (DE-604)BV000905393 |
work_keys_str_mv | AT geseralfons aproofofhigmanslemmabyopeninduction |