Omega-termination is undecidable for totally terminating term rewriting systems:
Abstract: "We give complete proof of the fact that the following problem is undecidable: Given: A term rewriting system, where the termination of its rewrite relation is provable by a total reduction order on ground terms, Wanted: Does there exist a strictly monotonic interpretation in the posi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Passau
1996
|
Schriftenreihe: | Universität <Passau> / Fakultät für Mathematik und Informatik: MIP
1996,08 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We give complete proof of the fact that the following problem is undecidable: Given: A term rewriting system, where the termination of its rewrite relation is provable by a total reduction order on ground terms, Wanted: Does there exist a strictly monotonic interpretation in the positive integers that proves termination?" |
Beschreibung: | 17, 4 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010769389 | ||
003 | DE-604 | ||
005 | 19961202 | ||
007 | t| | ||
008 | 960523s1996 xx |||| 00||| eng d | ||
035 | |a (OCoLC)36067069 | ||
035 | |a (DE-599)BVBBV010769389 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-154 |a DE-739 |a DE-12 |a DE-91G |a DE-634 | ||
100 | 1 | |a Geser, Alfons |e Verfasser |4 aut | |
245 | 1 | 0 | |a Omega-termination is undecidable for totally terminating term rewriting systems |c A. Geser |
264 | 1 | |a Passau |c 1996 | |
300 | |a 17, 4 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Universität <Passau> / Fakultät für Mathematik und Informatik: MIP |v 1996,08 | |
520 | 3 | |a Abstract: "We give complete proof of the fact that the following problem is undecidable: Given: A term rewriting system, where the termination of its rewrite relation is provable by a total reduction order on ground terms, Wanted: Does there exist a strictly monotonic interpretation in the positive integers that proves termination?" | |
650 | 4 | |a Decidability (Mathematical logic) | |
650 | 4 | |a Rewriting systems (Computer science) | |
650 | 0 | 7 | |a Theoretische Informatik |0 (DE-588)4196735-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Informatik |0 (DE-588)4026894-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Theoretische Informatik |0 (DE-588)4196735-5 |D s |
689 | 0 | 1 | |a Informatik |0 (DE-588)4026894-9 |D s |
689 | 0 | 2 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |5 DE-604 | |
810 | 2 | |a Fakultät für Mathematik und Informatik: MIP |t Universität <Passau> |v 1996,08 |w (DE-604)BV000905393 |9 1996,08 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-007191846 |
Datensatz im Suchindex
_version_ | 1820882317213696000 |
---|---|
adam_text | |
any_adam_object | |
author | Geser, Alfons |
author_facet | Geser, Alfons |
author_role | aut |
author_sort | Geser, Alfons |
author_variant | a g ag |
building | Verbundindex |
bvnumber | BV010769389 |
classification_rvk | SS 5600 |
ctrlnum | (OCoLC)36067069 (DE-599)BVBBV010769389 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV010769389</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19961202</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">960523s1996 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)36067069</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010769389</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-154</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Geser, Alfons</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Omega-termination is undecidable for totally terminating term rewriting systems</subfield><subfield code="c">A. Geser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Passau</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17, 4 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Universität <Passau> / Fakultät für Mathematik und Informatik: MIP</subfield><subfield code="v">1996,08</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We give complete proof of the fact that the following problem is undecidable: Given: A term rewriting system, where the termination of its rewrite relation is provable by a total reduction order on ground terms, Wanted: Does there exist a strictly monotonic interpretation in the positive integers that proves termination?"</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decidability (Mathematical logic)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rewriting systems (Computer science)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theoretische Informatik</subfield><subfield code="0">(DE-588)4196735-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Theoretische Informatik</subfield><subfield code="0">(DE-588)4196735-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Fakultät für Mathematik und Informatik: MIP</subfield><subfield code="t">Universität <Passau></subfield><subfield code="v">1996,08</subfield><subfield code="w">(DE-604)BV000905393</subfield><subfield code="9">1996,08</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007191846</subfield></datafield></record></collection> |
id | DE-604.BV010769389 |
illustrated | Not Illustrated |
indexdate | 2025-01-10T17:04:59Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007191846 |
oclc_num | 36067069 |
open_access_boolean | |
owner | DE-154 DE-739 DE-12 DE-91G DE-BY-TUM DE-634 |
owner_facet | DE-154 DE-739 DE-12 DE-91G DE-BY-TUM DE-634 |
physical | 17, 4 S. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
record_format | marc |
series2 | Universität <Passau> / Fakultät für Mathematik und Informatik: MIP |
spelling | Geser, Alfons Verfasser aut Omega-termination is undecidable for totally terminating term rewriting systems A. Geser Passau 1996 17, 4 S. txt rdacontent n rdamedia nc rdacarrier Universität <Passau> / Fakultät für Mathematik und Informatik: MIP 1996,08 Abstract: "We give complete proof of the fact that the following problem is undecidable: Given: A term rewriting system, where the termination of its rewrite relation is provable by a total reduction order on ground terms, Wanted: Does there exist a strictly monotonic interpretation in the positive integers that proves termination?" Decidability (Mathematical logic) Rewriting systems (Computer science) Theoretische Informatik (DE-588)4196735-5 gnd rswk-swf Informatik (DE-588)4026894-9 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Theoretische Informatik (DE-588)4196735-5 s Informatik (DE-588)4026894-9 s Mathematik (DE-588)4037944-9 s DE-604 Fakultät für Mathematik und Informatik: MIP Universität <Passau> 1996,08 (DE-604)BV000905393 1996,08 |
spellingShingle | Geser, Alfons Omega-termination is undecidable for totally terminating term rewriting systems Decidability (Mathematical logic) Rewriting systems (Computer science) Theoretische Informatik (DE-588)4196735-5 gnd Informatik (DE-588)4026894-9 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4196735-5 (DE-588)4026894-9 (DE-588)4037944-9 |
title | Omega-termination is undecidable for totally terminating term rewriting systems |
title_auth | Omega-termination is undecidable for totally terminating term rewriting systems |
title_exact_search | Omega-termination is undecidable for totally terminating term rewriting systems |
title_full | Omega-termination is undecidable for totally terminating term rewriting systems A. Geser |
title_fullStr | Omega-termination is undecidable for totally terminating term rewriting systems A. Geser |
title_full_unstemmed | Omega-termination is undecidable for totally terminating term rewriting systems A. Geser |
title_short | Omega-termination is undecidable for totally terminating term rewriting systems |
title_sort | omega termination is undecidable for totally terminating term rewriting systems |
topic | Decidability (Mathematical logic) Rewriting systems (Computer science) Theoretische Informatik (DE-588)4196735-5 gnd Informatik (DE-588)4026894-9 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | Decidability (Mathematical logic) Rewriting systems (Computer science) Theoretische Informatik Informatik Mathematik |
volume_link | (DE-604)BV000905393 |
work_keys_str_mv | AT geseralfons omegaterminationisundecidablefortotallyterminatingtermrewritingsystems |