Topology for physicists:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1996
|
Ausgabe: | Corr. 2. printing |
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften
308 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XI, 296 S. graph. Darst. |
ISBN: | 3540547541 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010764389 | ||
003 | DE-604 | ||
005 | 20170928 | ||
007 | t | ||
008 | 960513s1996 gw d||| |||| 00||| eng d | ||
016 | 7 | |a 946973024 |2 DE-101 | |
020 | |a 3540547541 |c : DM 178.00 |9 3-540-54754-1 | ||
035 | |a (OCoLC)263627701 | ||
035 | |a (DE-599)BVBBV010764389 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-703 |a DE-91G |a DE-1050 |a DE-384 |a DE-355 |a DE-526 |a DE-11 | ||
082 | 0 | |a 514 | |
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
084 | |a MAT 550f |2 stub | ||
084 | |a PHY 014f |2 stub | ||
100 | 1 | |a Schwarz, Albert |d 1934- |e Verfasser |0 (DE-588)123437725 |4 aut | |
240 | 1 | 0 | |a Kvantovaja teorija polja i topologija |
245 | 1 | 0 | |a Topology for physicists |c Albert S. Schwarz |
250 | |a Corr. 2. printing | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 1996 | |
300 | |a XI, 296 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Grundlehren der mathematischen Wissenschaften |v 308 | |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Topologie |0 (DE-588)4120861-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Topologie |0 (DE-588)4120861-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
830 | 0 | |a Grundlehren der mathematischen Wissenschaften |v 308 |w (DE-604)BV000000395 |9 308 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007188324&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007188324 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804125243922448384 |
---|---|
adam_text | ALBERT S. SCHWARZ :*:; J C OGY FOR PHYSICISTS WITH 54 FIGURES SPRINGER
CONTENTS BACKGROUND 1 0.1 METRIC AND TOPOLOGICAL SPACES 1 0.2 GROUPS 4
0.3 , GLUINGS 6 0.4 EQUIVALENCE RELATIONS AND QUOTIENT SPACES 9 0.5
GROUP REPRESENTATIONS 11 0.6 GROUP ACTIONS 13 0.7 **QUATERNIONS-** 16
FUNDAMENTAL CONCEPTS 19 1.1 TOPOLOGICAL EQUIVALENCE 19 1.2 TOPOLOGICAL
PROPERTIES 21 1.3 HOMOTOPY 23 1.4 SMOOTH MAPS 30 THE DEGREE OF A MAP
33 2.1 MAPS OF EUCLIDEAN SPACE TO ITSELF 33 2.2 MAPS OF THE SPHERE TO
ITSELF 37 2.3 THE DEGREE OF A CONTINUOUS MAP 41 2.4 THE BROUWER
FIXED-POINT THEOREM 42 THE FUNDAMENTAL GROUP AND COVERING SPACES 45 3.1
THE FUNDAMENTAL GROUP 45 3.2 COVERING SPACES*. 49 3.3 *DESCRIPTION OF
COVERING SPACES-* 53 3.4 *MULTIVALUED CORRESPONDENCES-* 55 3.5
**APPLICATIONS OF THE FUNDAMENTAL GROUP-** 56 MANIFOLDS 59 4.1 SMOOTH
MANIFOLDS 59 4.2 ORIENTATION 64 4.3 NONSINGULAR SURFACES IN R N 67 4.4
SUBMANIFOLDS AND TUBULAR NEIGHBORHOODS 70 4.5 *MANIFOLDS WITH BOUNDARY-*
72 4.6 **COMPLEX MANIFOLDS*-* 73 4.7 ***INFINITE-DIMENSIONAL
MANIFOLDS-*-*-* 74 X CONTENTS 5 DIFFERENTIAL FORMS AND HOMOLOGY IN
EUCLIDEAN SPACE . 77 5.1 DIFFERENTIAL FORMS 77 5.2 HOMOLOGY AND
COHOMOLOGY IN EUCLIDEAN SPACE 87 5.3 HOMOLOGY AND HOMOTOPY 94 5.4
*ELECTROMAGNETIC FIELDS AND MAGNETIC CHARGES-* 98 6 HOMOLOGY AND
COHOMOLOGY 101 6.1 HOMOLOGY OF ARBITRARY SPACES 101 6.2 HOMOLOGY AND
COHOMOLOGY OF CELL COMPLEXES 103 6.3 DIFFERENTIAL FORMS AND HOMOLOGY OF
SMOOTH MANIFOLDS 117 6.4 EULER CHARACTERISTIC 125 6.5 **GENERAL
DEFINITION OF HOMOLOGY AND COHOMOLOGY GROUPS-** . 127 6.6 **RELATIVE
HOMOLOGY AND COHOMOLOGY** 130 6.7 **CROSS PRODUCTS. CUP AND CAP
PRODUCTS** 139 6.8 **THE LINKING NUMBER** : 143 6.9 *RIEMANNIAN
MANIFOLDS AND HARMONIC FORMS* 145 6.10 *ESTIMATION OF THE NUMBER OF
CRITICAL POINTS* 149 7 HOMOTOPY CLASSIFICATION OF MAPS OF THE SPHERE 159
7.1 HOMOTOPY GROUPS OF SIMPLY CONNECTED SPACES 159 7.2 MAPS FROM THE
SPHERE INTO NON-SIMPLY-CONNECTED SPACES . . . 161 7.3 MAPS OF SUBSETS OF
R N . 163 7.4 **HOMOTOPY GROUPS OF SPHERES** 164 8 HOMOTOPY GROUPS 167
8.1 *THE GROUPS -K K {E,E 0 ) 167 8.2 *RELATION BETWEEN IR K (E,E 0 )
AND {S K , E). THE HUREWICZ MAP* . 170 9 FIBERED SPACES 173 9.1
FIBRATIONS: DEFINITION AND BASIC PROPERTIES 173 9.2. LOCAL TRIVIALITY
AND SECTIONS 175 9.3 FIBRATIONS ARISING FROM GROUP ACTIONS 177 9.4
**VECTOR FIBRATIONS AND G-FIBRATIONS** 181 10 FIBRATIONS AND HOMOTOPY
GROUPS 185 10.1 RELATIONSHIPS BETWEEN THE HOMOTOPY GROUPS OF A FIBRATION
. . 185 10.2 EXAMPLES AND APPLICATIONS 187 11 HOMOTOPY THEORY OF
FIBRATIONS 191 11.1 *THE HOMOTOPY LIFTING PROPERTY* 191 11.2 *THE EXACT
HOMOTOPY SEQUENCE* 193 11.3 *RELATIVE HOMOTOPY GROUPS* 196 11:4
**CONSTRUCTION OF SECTIONS. OBSTRUCTIONS** 199 CONTENTS XI 12 LIE GROUPS
209 12.1 BASIC DEFINITIONS 209 12.2 **ONE-PARAMETER SUBGROUPS** 211 12.3
**INVARIANT TENSOR FIELDS** 212 13 LIE ALGEBRAS 217 13.1 BASIC
DEFINITIONS 217 13.2 THE LIE ALGEBRA OF A LIE GROUP 218 13.3 REDUCING
PROBLEMS ABOUT LIE GROUPS TO PROBLEMS ABOUT LIE ALGEBRAS 223 13.4 THE
ADJOINT REPRESENTATION 226 13.5 COMPACT LIE GROUPS 228 14 TOPOLOGY OF
LIE GROUPS AND HOMOGENEOUS MANIFOLDS 233 14.1 HOMOTOPY GROUPS OF LIE
GROUPS AND HOMOGENEOUS MANIFOLDS . 233 14.2 HOMOLOGY OF LIE GROUPS AND
HOMOGENEOUS MANIFOLDS 236 15 GEOMETRY OF GAUGE FIELDS 243 15.1 GAUGE
FIELDS AND CONNECTIONS IN R 243 15.2 COVARIANT DIFFERENTIATION OF
DIFFERENTIAL FORMS 247 15.3 GAUGE FIELDS ON MANIFOLDS 251 15.4
CHARACTERISTIC CLASSES OF GAUGE FIELDS 254 15.5 *GEOMETRY OF GAUGE
FIELDS ON MANIFOLDS* 263 15.6 CHARACTERISTIC CLASSES OF PRINCIPAL
FIBRATIONS 266 15.7 A GENERAL CONSTRUCTION FOR CHARACTERISTIC CLASSES
268 15.8 **G-STRUCTURES AND CHARACTERISTIC CLASSES** 270 15.9 THE SPACE
OF GAUGE FIELDS. GRIBOV AMBIGUITY . . . . 274 BIBLIOGRAPHY 287 INDEX 289
INDEX OF NOTATION 295
|
any_adam_object | 1 |
author | Schwarz, Albert 1934- |
author_GND | (DE-588)123437725 |
author_facet | Schwarz, Albert 1934- |
author_role | aut |
author_sort | Schwarz, Albert 1934- |
author_variant | a s as |
building | Verbundindex |
bvnumber | BV010764389 |
classification_rvk | SK 300 |
classification_tum | MAT 550f PHY 014f |
ctrlnum | (OCoLC)263627701 (DE-599)BVBBV010764389 |
dewey-full | 514 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514 |
dewey-search | 514 |
dewey-sort | 3514 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
edition | Corr. 2. printing |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02285nam a2200553 cb4500</leader><controlfield tag="001">BV010764389</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170928 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960513s1996 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">946973024</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540547541</subfield><subfield code="c">: DM 178.00</subfield><subfield code="9">3-540-54754-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)263627701</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010764389</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 550f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 014f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schwarz, Albert</subfield><subfield code="d">1934-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123437725</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Kvantovaja teorija polja i topologija</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topology for physicists</subfield><subfield code="c">Albert S. Schwarz</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Corr. 2. printing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 296 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">308</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">308</subfield><subfield code="w">(DE-604)BV000000395</subfield><subfield code="9">308</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007188324&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007188324</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV010764389 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:58:28Z |
institution | BVB |
isbn | 3540547541 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007188324 |
oclc_num | 263627701 |
open_access_boolean | |
owner | DE-703 DE-91G DE-BY-TUM DE-1050 DE-384 DE-355 DE-BY-UBR DE-526 DE-11 |
owner_facet | DE-703 DE-91G DE-BY-TUM DE-1050 DE-384 DE-355 DE-BY-UBR DE-526 DE-11 |
physical | XI, 296 S. graph. Darst. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer |
record_format | marc |
series | Grundlehren der mathematischen Wissenschaften |
series2 | Grundlehren der mathematischen Wissenschaften |
spelling | Schwarz, Albert 1934- Verfasser (DE-588)123437725 aut Kvantovaja teorija polja i topologija Topology for physicists Albert S. Schwarz Corr. 2. printing Berlin [u.a.] Springer 1996 XI, 296 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Grundlehren der mathematischen Wissenschaften 308 Topologie (DE-588)4060425-1 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Physik (DE-588)4045956-1 gnd rswk-swf Algebraische Topologie (DE-588)4120861-4 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 s Topologie (DE-588)4060425-1 s 1\p DE-604 Algebraische Topologie (DE-588)4120861-4 s 2\p DE-604 Physik (DE-588)4045956-1 s 3\p DE-604 Grundlehren der mathematischen Wissenschaften 308 (DE-604)BV000000395 308 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007188324&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schwarz, Albert 1934- Topology for physicists Grundlehren der mathematischen Wissenschaften Topologie (DE-588)4060425-1 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd Physik (DE-588)4045956-1 gnd Algebraische Topologie (DE-588)4120861-4 gnd |
subject_GND | (DE-588)4060425-1 (DE-588)4047984-5 (DE-588)4045956-1 (DE-588)4120861-4 |
title | Topology for physicists |
title_alt | Kvantovaja teorija polja i topologija |
title_auth | Topology for physicists |
title_exact_search | Topology for physicists |
title_full | Topology for physicists Albert S. Schwarz |
title_fullStr | Topology for physicists Albert S. Schwarz |
title_full_unstemmed | Topology for physicists Albert S. Schwarz |
title_short | Topology for physicists |
title_sort | topology for physicists |
topic | Topologie (DE-588)4060425-1 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd Physik (DE-588)4045956-1 gnd Algebraische Topologie (DE-588)4120861-4 gnd |
topic_facet | Topologie Quantenfeldtheorie Physik Algebraische Topologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007188324&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000395 |
work_keys_str_mv | AT schwarzalbert kvantovajateorijapoljaitopologija AT schwarzalbert topologyforphysicists |