Vaguely defined objects: representations, fuzzy sets and nonclassical cardinality theory
This unique monograph explores the cardinal, or quantitative, aspects of objects in the presence of vagueness, called vaguely defined objects. In the first part of the book such topics as fuzzy sets and derivative ideas, twofold fuzzy sets, and flou sets are concisely reviewed as typical mathematica...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht [u.a.]
Kluwer
1996
|
Schriftenreihe: | [Theory and decision library / B]
33 |
Schlagworte: | |
Zusammenfassung: | This unique monograph explores the cardinal, or quantitative, aspects of objects in the presence of vagueness, called vaguely defined objects. In the first part of the book such topics as fuzzy sets and derivative ideas, twofold fuzzy sets, and flou sets are concisely reviewed as typical mathematical representations of vaguely defined objects. Also, a unifying, approximative representation is given. The second part uses this representation, together with Lukasiewicz logic as a basis for constructing a complete, general and easily applicable nonclassical cardinality theory for vaguely defined objects. Applications to computer and information science are discussed. Audience: This volume will be of interest to mathematicians, computer and information scientists, whose work involves mathematical aspects of vagueness, fuzzy sets and their methods, applied many-valued logics, expert systems and data bases. |
Beschreibung: | XIV, 265 S. |
ISBN: | 0792338502 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010686560 | ||
003 | DE-604 | ||
005 | 19960829 | ||
007 | t | ||
008 | 960327s1996 |||| 00||| eng d | ||
020 | |a 0792338502 |9 0-7923-3850-2 | ||
035 | |a (OCoLC)33439638 | ||
035 | |a (DE-599)BVBBV010686560 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91 |a DE-91G |a DE-739 |a DE-188 | ||
050 | 0 | |a QA248 | |
082 | 0 | |a 511.3/22 |2 20 | |
084 | |a SK 150 |0 (DE-625)143218: |2 rvk | ||
084 | |a DAT 773f |2 stub | ||
100 | 1 | |a Wygralak, Maciej |e Verfasser |4 aut | |
245 | 1 | 0 | |a Vaguely defined objects |b representations, fuzzy sets and nonclassical cardinality theory |c Maciej Wygralak |
264 | 1 | |a Dordrecht [u.a.] |b Kluwer |c 1996 | |
300 | |a XIV, 265 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a [Theory and decision library / B] |v 33 | |
520 | 3 | |a This unique monograph explores the cardinal, or quantitative, aspects of objects in the presence of vagueness, called vaguely defined objects. In the first part of the book such topics as fuzzy sets and derivative ideas, twofold fuzzy sets, and flou sets are concisely reviewed as typical mathematical representations of vaguely defined objects. Also, a unifying, approximative representation is given. The second part uses this representation, together with Lukasiewicz logic as a basis for constructing a complete, general and easily applicable nonclassical cardinality theory for vaguely defined objects. Applications to computer and information science are discussed. Audience: This volume will be of interest to mathematicians, computer and information scientists, whose work involves mathematical aspects of vagueness, fuzzy sets and their methods, applied many-valued logics, expert systems and data bases. | |
650 | 4 | |a Cardinal numbers | |
650 | 4 | |a Fuzzy sets | |
650 | 4 | |a Many-valued logic | |
650 | 0 | 7 | |a Mehrwertige Logik |0 (DE-588)4169335-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kardinalzahltheorie |0 (DE-588)4163319-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fuzzy-Menge |0 (DE-588)4061868-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fuzzy-Menge |0 (DE-588)4061868-7 |D s |
689 | 0 | 1 | |a Mehrwertige Logik |0 (DE-588)4169335-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Fuzzy-Menge |0 (DE-588)4061868-7 |D s |
689 | 1 | 1 | |a Kardinalzahltheorie |0 (DE-588)4163319-2 |D s |
689 | 1 | |5 DE-188 | |
810 | 2 | |a B] |t [Theory and decision library |v 33 |w (DE-604)BV000021513 |9 33 | |
940 | 1 | |n oe | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007132956 |
Datensatz im Suchindex
_version_ | 1804125164497010688 |
---|---|
any_adam_object | |
author | Wygralak, Maciej |
author_facet | Wygralak, Maciej |
author_role | aut |
author_sort | Wygralak, Maciej |
author_variant | m w mw |
building | Verbundindex |
bvnumber | BV010686560 |
callnumber-first | Q - Science |
callnumber-label | QA248 |
callnumber-raw | QA248 |
callnumber-search | QA248 |
callnumber-sort | QA 3248 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 150 |
classification_tum | DAT 773f |
ctrlnum | (OCoLC)33439638 (DE-599)BVBBV010686560 |
dewey-full | 511.3/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/22 |
dewey-search | 511.3/22 |
dewey-sort | 3511.3 222 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02539nam a2200493 cb4500</leader><controlfield tag="001">BV010686560</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19960829 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960327s1996 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0792338502</subfield><subfield code="9">0-7923-3850-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)33439638</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010686560</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA248</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/22</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 150</subfield><subfield code="0">(DE-625)143218:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 773f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wygralak, Maciej</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vaguely defined objects</subfield><subfield code="b">representations, fuzzy sets and nonclassical cardinality theory</subfield><subfield code="c">Maciej Wygralak</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Kluwer</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 265 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">[Theory and decision library / B]</subfield><subfield code="v">33</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This unique monograph explores the cardinal, or quantitative, aspects of objects in the presence of vagueness, called vaguely defined objects. In the first part of the book such topics as fuzzy sets and derivative ideas, twofold fuzzy sets, and flou sets are concisely reviewed as typical mathematical representations of vaguely defined objects. Also, a unifying, approximative representation is given. The second part uses this representation, together with Lukasiewicz logic as a basis for constructing a complete, general and easily applicable nonclassical cardinality theory for vaguely defined objects. Applications to computer and information science are discussed. Audience: This volume will be of interest to mathematicians, computer and information scientists, whose work involves mathematical aspects of vagueness, fuzzy sets and their methods, applied many-valued logics, expert systems and data bases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cardinal numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Many-valued logic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrwertige Logik</subfield><subfield code="0">(DE-588)4169335-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kardinalzahltheorie</subfield><subfield code="0">(DE-588)4163319-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fuzzy-Menge</subfield><subfield code="0">(DE-588)4061868-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fuzzy-Menge</subfield><subfield code="0">(DE-588)4061868-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrwertige Logik</subfield><subfield code="0">(DE-588)4169335-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Fuzzy-Menge</subfield><subfield code="0">(DE-588)4061868-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kardinalzahltheorie</subfield><subfield code="0">(DE-588)4163319-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">B]</subfield><subfield code="t">[Theory and decision library</subfield><subfield code="v">33</subfield><subfield code="w">(DE-604)BV000021513</subfield><subfield code="9">33</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007132956</subfield></datafield></record></collection> |
id | DE-604.BV010686560 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:57:12Z |
institution | BVB |
isbn | 0792338502 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007132956 |
oclc_num | 33439638 |
open_access_boolean | |
owner | DE-12 DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-739 DE-188 |
owner_facet | DE-12 DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-739 DE-188 |
physical | XIV, 265 S. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Kluwer |
record_format | marc |
series2 | [Theory and decision library / B] |
spelling | Wygralak, Maciej Verfasser aut Vaguely defined objects representations, fuzzy sets and nonclassical cardinality theory Maciej Wygralak Dordrecht [u.a.] Kluwer 1996 XIV, 265 S. txt rdacontent n rdamedia nc rdacarrier [Theory and decision library / B] 33 This unique monograph explores the cardinal, or quantitative, aspects of objects in the presence of vagueness, called vaguely defined objects. In the first part of the book such topics as fuzzy sets and derivative ideas, twofold fuzzy sets, and flou sets are concisely reviewed as typical mathematical representations of vaguely defined objects. Also, a unifying, approximative representation is given. The second part uses this representation, together with Lukasiewicz logic as a basis for constructing a complete, general and easily applicable nonclassical cardinality theory for vaguely defined objects. Applications to computer and information science are discussed. Audience: This volume will be of interest to mathematicians, computer and information scientists, whose work involves mathematical aspects of vagueness, fuzzy sets and their methods, applied many-valued logics, expert systems and data bases. Cardinal numbers Fuzzy sets Many-valued logic Mehrwertige Logik (DE-588)4169335-8 gnd rswk-swf Kardinalzahltheorie (DE-588)4163319-2 gnd rswk-swf Fuzzy-Menge (DE-588)4061868-7 gnd rswk-swf Fuzzy-Menge (DE-588)4061868-7 s Mehrwertige Logik (DE-588)4169335-8 s DE-604 Kardinalzahltheorie (DE-588)4163319-2 s DE-188 B] [Theory and decision library 33 (DE-604)BV000021513 33 |
spellingShingle | Wygralak, Maciej Vaguely defined objects representations, fuzzy sets and nonclassical cardinality theory Cardinal numbers Fuzzy sets Many-valued logic Mehrwertige Logik (DE-588)4169335-8 gnd Kardinalzahltheorie (DE-588)4163319-2 gnd Fuzzy-Menge (DE-588)4061868-7 gnd |
subject_GND | (DE-588)4169335-8 (DE-588)4163319-2 (DE-588)4061868-7 |
title | Vaguely defined objects representations, fuzzy sets and nonclassical cardinality theory |
title_auth | Vaguely defined objects representations, fuzzy sets and nonclassical cardinality theory |
title_exact_search | Vaguely defined objects representations, fuzzy sets and nonclassical cardinality theory |
title_full | Vaguely defined objects representations, fuzzy sets and nonclassical cardinality theory Maciej Wygralak |
title_fullStr | Vaguely defined objects representations, fuzzy sets and nonclassical cardinality theory Maciej Wygralak |
title_full_unstemmed | Vaguely defined objects representations, fuzzy sets and nonclassical cardinality theory Maciej Wygralak |
title_short | Vaguely defined objects |
title_sort | vaguely defined objects representations fuzzy sets and nonclassical cardinality theory |
title_sub | representations, fuzzy sets and nonclassical cardinality theory |
topic | Cardinal numbers Fuzzy sets Many-valued logic Mehrwertige Logik (DE-588)4169335-8 gnd Kardinalzahltheorie (DE-588)4163319-2 gnd Fuzzy-Menge (DE-588)4061868-7 gnd |
topic_facet | Cardinal numbers Fuzzy sets Many-valued logic Mehrwertige Logik Kardinalzahltheorie Fuzzy-Menge |
volume_link | (DE-604)BV000021513 |
work_keys_str_mv | AT wygralakmaciej vaguelydefinedobjectsrepresentationsfuzzysetsandnonclassicalcardinalitytheory |