Left and right Gröbner bases in Ore extensions of polynomial rings:

Abstract: "We show, that Gröbner bases can be computed for left and right ideals of certain Ore extensions of polynomial rings. Consider an Ore extension K[X₁, ..., X[subscript m]][Y;[alpha], [delta]] of a polynomial ring over a field, where [formula] for some f[subscript i] [element of] K[X₁ ....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Pesch, Michael (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Passau 1996
Schriftenreihe:Universität <Passau> / Fakultät für Mathematik und Informatik: MIP 1996,01
Schlagworte:
Zusammenfassung:Abstract: "We show, that Gröbner bases can be computed for left and right ideals of certain Ore extensions of polynomial rings. Consider an Ore extension K[X₁, ..., X[subscript m]][Y;[alpha], [delta]] of a polynomial ring over a field, where [formula] for some f[subscript i] [element of] K[X₁ ..., X[subscript m]], f[subscript i]<X[subscript i][superscript ei] for some admissible term order <, e[subscript i] [element of] N[0] and [alpha][line]K = id. This rings are in general neither right nor left Noetherian. Nevertheless finite left and right Gröbner bases for finitely generated left and right ideals do exist for special term orders. Using this Gröbner bases the ideal membership problem can be solved. For other term orders no finite Gröbner bases exist in general. Finite left and right Gröbner bases can be computed using left/right reduction and s- polynomials (based on right/left divisibility and left/right least common multiples) in Buchbergers algorithm. Termination can be proven by a modified Dickson lemma, using the special term order."
Beschreibung:28, 4 S.

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!