Left and right Gröbner bases in Ore extensions of polynomial rings:
Abstract: "We show, that Gröbner bases can be computed for left and right ideals of certain Ore extensions of polynomial rings. Consider an Ore extension K[X₁, ..., X[subscript m]][Y;[alpha], [delta]] of a polynomial ring over a field, where [formula] for some f[subscript i] [element of] K[X₁ ....
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Passau
1996
|
Schriftenreihe: | Universität <Passau> / Fakultät für Mathematik und Informatik: MIP
1996,01 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We show, that Gröbner bases can be computed for left and right ideals of certain Ore extensions of polynomial rings. Consider an Ore extension K[X₁, ..., X[subscript m]][Y;[alpha], [delta]] of a polynomial ring over a field, where [formula] for some f[subscript i] [element of] K[X₁ ..., X[subscript m]], f[subscript i]<X[subscript i][superscript ei] for some admissible term order <, e[subscript i] [element of] N[0] and [alpha][line]K = id. This rings are in general neither right nor left Noetherian. Nevertheless finite left and right Gröbner bases for finitely generated left and right ideals do exist for special term orders. Using this Gröbner bases the ideal membership problem can be solved. For other term orders no finite Gröbner bases exist in general. Finite left and right Gröbner bases can be computed using left/right reduction and s- polynomials (based on right/left divisibility and left/right least common multiples) in Buchbergers algorithm. Termination can be proven by a modified Dickson lemma, using the special term order." |
Beschreibung: | 28, 4 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010678654 | ||
003 | DE-604 | ||
007 | t| | ||
008 | 960325s1996 xx |||| 00||| eng d | ||
035 | |a (OCoLC)36067061 | ||
035 | |a (DE-599)BVBBV010678654 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-154 |a DE-739 |a DE-12 |a DE-91G |a DE-384 |a DE-634 | ||
100 | 1 | |a Pesch, Michael |e Verfasser |4 aut | |
245 | 1 | 0 | |a Left and right Gröbner bases in Ore extensions of polynomial rings |c Michael Pesch |
264 | 1 | |a Passau |c 1996 | |
300 | |a 28, 4 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Universität <Passau> / Fakultät für Mathematik und Informatik: MIP |v 1996,01 | |
520 | 3 | |a Abstract: "We show, that Gröbner bases can be computed for left and right ideals of certain Ore extensions of polynomial rings. Consider an Ore extension K[X₁, ..., X[subscript m]][Y;[alpha], [delta]] of a polynomial ring over a field, where [formula] for some f[subscript i] [element of] K[X₁ ..., X[subscript m]], f[subscript i]<X[subscript i][superscript ei] for some admissible term order <, e[subscript i] [element of] N[0] and [alpha][line]K = id. This rings are in general neither right nor left Noetherian. Nevertheless finite left and right Gröbner bases for finitely generated left and right ideals do exist for special term orders. Using this Gröbner bases the ideal membership problem can be solved. For other term orders no finite Gröbner bases exist in general. Finite left and right Gröbner bases can be computed using left/right reduction and s- polynomials (based on right/left divisibility and left/right least common multiples) in Buchbergers algorithm. Termination can be proven by a modified Dickson lemma, using the special term order." | |
650 | 4 | |a Gröbner bases | |
650 | 4 | |a Polynomial rings | |
650 | 0 | 7 | |a Theoretische Informatik |0 (DE-588)4196735-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Informatik |0 (DE-588)4026894-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Theoretische Informatik |0 (DE-588)4196735-5 |D s |
689 | 0 | 1 | |a Informatik |0 (DE-588)4026894-9 |D s |
689 | 0 | 2 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |5 DE-604 | |
810 | 2 | |a Fakultät für Mathematik und Informatik: MIP |t Universität <Passau> |v 1996,01 |w (DE-604)BV000905393 |9 1996,01 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-007126954 |
Datensatz im Suchindex
_version_ | 1820882317195870208 |
---|---|
adam_text | |
any_adam_object | |
author | Pesch, Michael |
author_facet | Pesch, Michael |
author_role | aut |
author_sort | Pesch, Michael |
author_variant | m p mp |
building | Verbundindex |
bvnumber | BV010678654 |
classification_rvk | SS 5600 |
ctrlnum | (OCoLC)36067061 (DE-599)BVBBV010678654 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV010678654</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">960325s1996 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)36067061</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010678654</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-154</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pesch, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Left and right Gröbner bases in Ore extensions of polynomial rings</subfield><subfield code="c">Michael Pesch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Passau</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">28, 4 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Universität <Passau> / Fakultät für Mathematik und Informatik: MIP</subfield><subfield code="v">1996,01</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We show, that Gröbner bases can be computed for left and right ideals of certain Ore extensions of polynomial rings. Consider an Ore extension K[X₁, ..., X[subscript m]][Y;[alpha], [delta]] of a polynomial ring over a field, where [formula] for some f[subscript i] [element of] K[X₁ ..., X[subscript m]], f[subscript i]<X[subscript i][superscript ei] for some admissible term order <, e[subscript i] [element of] N[0] and [alpha][line]K = id. This rings are in general neither right nor left Noetherian. Nevertheless finite left and right Gröbner bases for finitely generated left and right ideals do exist for special term orders. Using this Gröbner bases the ideal membership problem can be solved. For other term orders no finite Gröbner bases exist in general. Finite left and right Gröbner bases can be computed using left/right reduction and s- polynomials (based on right/left divisibility and left/right least common multiples) in Buchbergers algorithm. Termination can be proven by a modified Dickson lemma, using the special term order."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gröbner bases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomial rings</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theoretische Informatik</subfield><subfield code="0">(DE-588)4196735-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Theoretische Informatik</subfield><subfield code="0">(DE-588)4196735-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Fakultät für Mathematik und Informatik: MIP</subfield><subfield code="t">Universität <Passau></subfield><subfield code="v">1996,01</subfield><subfield code="w">(DE-604)BV000905393</subfield><subfield code="9">1996,01</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007126954</subfield></datafield></record></collection> |
id | DE-604.BV010678654 |
illustrated | Not Illustrated |
indexdate | 2025-01-10T17:04:59Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007126954 |
oclc_num | 36067061 |
open_access_boolean | |
owner | DE-154 DE-739 DE-12 DE-91G DE-BY-TUM DE-384 DE-634 |
owner_facet | DE-154 DE-739 DE-12 DE-91G DE-BY-TUM DE-384 DE-634 |
physical | 28, 4 S. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
record_format | marc |
series2 | Universität <Passau> / Fakultät für Mathematik und Informatik: MIP |
spelling | Pesch, Michael Verfasser aut Left and right Gröbner bases in Ore extensions of polynomial rings Michael Pesch Passau 1996 28, 4 S. txt rdacontent n rdamedia nc rdacarrier Universität <Passau> / Fakultät für Mathematik und Informatik: MIP 1996,01 Abstract: "We show, that Gröbner bases can be computed for left and right ideals of certain Ore extensions of polynomial rings. Consider an Ore extension K[X₁, ..., X[subscript m]][Y;[alpha], [delta]] of a polynomial ring over a field, where [formula] for some f[subscript i] [element of] K[X₁ ..., X[subscript m]], f[subscript i]<X[subscript i][superscript ei] for some admissible term order <, e[subscript i] [element of] N[0] and [alpha][line]K = id. This rings are in general neither right nor left Noetherian. Nevertheless finite left and right Gröbner bases for finitely generated left and right ideals do exist for special term orders. Using this Gröbner bases the ideal membership problem can be solved. For other term orders no finite Gröbner bases exist in general. Finite left and right Gröbner bases can be computed using left/right reduction and s- polynomials (based on right/left divisibility and left/right least common multiples) in Buchbergers algorithm. Termination can be proven by a modified Dickson lemma, using the special term order." Gröbner bases Polynomial rings Theoretische Informatik (DE-588)4196735-5 gnd rswk-swf Informatik (DE-588)4026894-9 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Theoretische Informatik (DE-588)4196735-5 s Informatik (DE-588)4026894-9 s Mathematik (DE-588)4037944-9 s DE-604 Fakultät für Mathematik und Informatik: MIP Universität <Passau> 1996,01 (DE-604)BV000905393 1996,01 |
spellingShingle | Pesch, Michael Left and right Gröbner bases in Ore extensions of polynomial rings Gröbner bases Polynomial rings Theoretische Informatik (DE-588)4196735-5 gnd Informatik (DE-588)4026894-9 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4196735-5 (DE-588)4026894-9 (DE-588)4037944-9 |
title | Left and right Gröbner bases in Ore extensions of polynomial rings |
title_auth | Left and right Gröbner bases in Ore extensions of polynomial rings |
title_exact_search | Left and right Gröbner bases in Ore extensions of polynomial rings |
title_full | Left and right Gröbner bases in Ore extensions of polynomial rings Michael Pesch |
title_fullStr | Left and right Gröbner bases in Ore extensions of polynomial rings Michael Pesch |
title_full_unstemmed | Left and right Gröbner bases in Ore extensions of polynomial rings Michael Pesch |
title_short | Left and right Gröbner bases in Ore extensions of polynomial rings |
title_sort | left and right grobner bases in ore extensions of polynomial rings |
topic | Gröbner bases Polynomial rings Theoretische Informatik (DE-588)4196735-5 gnd Informatik (DE-588)4026894-9 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | Gröbner bases Polynomial rings Theoretische Informatik Informatik Mathematik |
volume_link | (DE-604)BV000905393 |
work_keys_str_mv | AT peschmichael leftandrightgrobnerbasesinoreextensionsofpolynomialrings |