Dominance relations in unbounded knapsack problems:
Abstract: "The Unbounded Knapsack Problem (UKP) is a generalization of the 0-1 Knapsack Problem where an unlimited amount of each item type is available. In any efficient algorithm for UKP the reduction of dominated item types plays a central role, as the size of an instance may be decreased co...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
København
1994
|
Schriftenreihe: | Datalogisk Institut <København>: DIKU-Rapport
1994,33 |
Schlagworte: | |
Zusammenfassung: | Abstract: "The Unbounded Knapsack Problem (UKP) is a generalization of the 0-1 Knapsack Problem where an unlimited amount of each item type is available. In any efficient algorithm for UKP the reduction of dominated item types plays a central role, as the size of an instance may be decreased considerably this way. Traditionally the dominance test has been based on a sorting of the item types according to non-increasing profit-to-weight ratios, but a faster reduction may be obtained by sorting according to nondecreasing weights, since then the so- called quotient jumping technique may be applied. Computational experiments are presented to demonstrate the efficiency of the presented algorithm." |
Beschreibung: | 10 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010678589 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 960325s1994 |||| 00||| engod | ||
035 | |a (OCoLC)38254808 | ||
035 | |a (DE-599)BVBBV010678589 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Pisinger, David |e Verfasser |4 aut | |
245 | 1 | 0 | |a Dominance relations in unbounded knapsack problems |
264 | 1 | |a København |c 1994 | |
300 | |a 10 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Datalogisk Institut <København>: DIKU-Rapport |v 1994,33 | |
520 | 3 | |a Abstract: "The Unbounded Knapsack Problem (UKP) is a generalization of the 0-1 Knapsack Problem where an unlimited amount of each item type is available. In any efficient algorithm for UKP the reduction of dominated item types plays a central role, as the size of an instance may be decreased considerably this way. Traditionally the dominance test has been based on a sorting of the item types according to non-increasing profit-to-weight ratios, but a faster reduction may be obtained by sorting according to nondecreasing weights, since then the so- called quotient jumping technique may be applied. Computational experiments are presented to demonstrate the efficiency of the presented algorithm." | |
650 | 4 | |a Combinatorial optimization | |
650 | 4 | |a Computer algorithms | |
650 | 4 | |a Operations research | |
650 | 4 | |a Sorting (Electronic computers) | |
830 | 0 | |a Datalogisk Institut <København>: DIKU-Rapport |v 1994,33 |w (DE-604)BV010011493 |9 1994,33 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007126899 |
Datensatz im Suchindex
_version_ | 1804125156075896832 |
---|---|
any_adam_object | |
author | Pisinger, David |
author_facet | Pisinger, David |
author_role | aut |
author_sort | Pisinger, David |
author_variant | d p dp |
building | Verbundindex |
bvnumber | BV010678589 |
ctrlnum | (OCoLC)38254808 (DE-599)BVBBV010678589 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01683nam a2200325 cb4500</leader><controlfield tag="001">BV010678589</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960325s1994 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)38254808</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010678589</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pisinger, David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dominance relations in unbounded knapsack problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">København</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Datalogisk Institut <København>: DIKU-Rapport</subfield><subfield code="v">1994,33</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "The Unbounded Knapsack Problem (UKP) is a generalization of the 0-1 Knapsack Problem where an unlimited amount of each item type is available. In any efficient algorithm for UKP the reduction of dominated item types plays a central role, as the size of an instance may be decreased considerably this way. Traditionally the dominance test has been based on a sorting of the item types according to non-increasing profit-to-weight ratios, but a faster reduction may be obtained by sorting according to nondecreasing weights, since then the so- called quotient jumping technique may be applied. Computational experiments are presented to demonstrate the efficiency of the presented algorithm."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sorting (Electronic computers)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Datalogisk Institut <København>: DIKU-Rapport</subfield><subfield code="v">1994,33</subfield><subfield code="w">(DE-604)BV010011493</subfield><subfield code="9">1994,33</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007126899</subfield></datafield></record></collection> |
id | DE-604.BV010678589 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:57:04Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007126899 |
oclc_num | 38254808 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 10 S. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
record_format | marc |
series | Datalogisk Institut <København>: DIKU-Rapport |
series2 | Datalogisk Institut <København>: DIKU-Rapport |
spelling | Pisinger, David Verfasser aut Dominance relations in unbounded knapsack problems København 1994 10 S. txt rdacontent n rdamedia nc rdacarrier Datalogisk Institut <København>: DIKU-Rapport 1994,33 Abstract: "The Unbounded Knapsack Problem (UKP) is a generalization of the 0-1 Knapsack Problem where an unlimited amount of each item type is available. In any efficient algorithm for UKP the reduction of dominated item types plays a central role, as the size of an instance may be decreased considerably this way. Traditionally the dominance test has been based on a sorting of the item types according to non-increasing profit-to-weight ratios, but a faster reduction may be obtained by sorting according to nondecreasing weights, since then the so- called quotient jumping technique may be applied. Computational experiments are presented to demonstrate the efficiency of the presented algorithm." Combinatorial optimization Computer algorithms Operations research Sorting (Electronic computers) Datalogisk Institut <København>: DIKU-Rapport 1994,33 (DE-604)BV010011493 1994,33 |
spellingShingle | Pisinger, David Dominance relations in unbounded knapsack problems Datalogisk Institut <København>: DIKU-Rapport Combinatorial optimization Computer algorithms Operations research Sorting (Electronic computers) |
title | Dominance relations in unbounded knapsack problems |
title_auth | Dominance relations in unbounded knapsack problems |
title_exact_search | Dominance relations in unbounded knapsack problems |
title_full | Dominance relations in unbounded knapsack problems |
title_fullStr | Dominance relations in unbounded knapsack problems |
title_full_unstemmed | Dominance relations in unbounded knapsack problems |
title_short | Dominance relations in unbounded knapsack problems |
title_sort | dominance relations in unbounded knapsack problems |
topic | Combinatorial optimization Computer algorithms Operations research Sorting (Electronic computers) |
topic_facet | Combinatorial optimization Computer algorithms Operations research Sorting (Electronic computers) |
volume_link | (DE-604)BV010011493 |
work_keys_str_mv | AT pisingerdavid dominancerelationsinunboundedknapsackproblems |