Representations of compact Lie groups:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
New York [u.a.]
Springer
1995
|
Ausgabe: | Corr. 2. printing |
Schriftenreihe: | Graduate texts in mathematics
98 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 299 - 303 |
Beschreibung: | X, 313 S. 24 Ill. |
ISBN: | 3540136789 0387136789 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010669824 | ||
003 | DE-604 | ||
005 | 20050221 | ||
007 | t | ||
008 | 960311s1995 gw a||| |||| 00||| ger d | ||
016 | 7 | |a 946824304 |2 DE-101 | |
020 | |a 3540136789 |c (Berlin ...) Pp. |9 3-540-13678-9 | ||
020 | |a 0387136789 |c (New York ...) Pp. |9 0-387-13678-9 | ||
035 | |a (OCoLC)34029194 | ||
035 | |a (DE-599)BVBBV010669824 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-91 |a DE-11 | ||
050 | 0 | |a QA387 | |
082 | 0 | |a 512.5 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a MAT 202f |2 stub | ||
084 | |a MAT 225f |2 stub | ||
100 | 1 | |a Bröcker, Theodor |d 1938- |e Verfasser |0 (DE-588)106075284 |4 aut | |
245 | 1 | 0 | |a Representations of compact Lie groups |c Theodor Bröcker ; Tammo tom Dieck |
250 | |a Corr. 2. printing | ||
264 | 1 | |a New York [u.a.] |b Springer |c 1995 | |
300 | |a X, 313 S. |b 24 Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 98 | |
500 | |a Literaturverz. S. 299 - 303 | ||
650 | 4 | |a Lie groups | |
650 | 4 | |a Representations of Lie groups | |
650 | 0 | 7 | |a Kompakte Lie-Gruppe |0 (DE-588)4164846-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Repräsentation |0 (DE-588)4137492-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kompakte Gruppe |0 (DE-588)4164840-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kompakte Lie-Gruppe |0 (DE-588)4164846-8 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 1 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Kompakte Gruppe |0 (DE-588)4164840-7 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
689 | 3 | 0 | |a Repräsentation |0 (DE-588)4137492-7 |D s |
689 | 3 | |8 3\p |5 DE-604 | |
700 | 1 | |a Tom Dieck, Tammo |d 1938- |e Verfasser |0 (DE-588)124473091 |4 aut | |
830 | 0 | |a Graduate texts in mathematics |v 98 |w (DE-604)BV000000067 |9 98 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007122387&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007122387 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804125149408002048 |
---|---|
adam_text | I THEODOR BROECKER TAMMO TOM DIECK REPRESENTATIONS OF COMPACT LIE GROUPS
WITH 24 ILLUSTRATIONS SPRINGER CONTENTS CHAPTERI LIE GROUPS AND LIE
ALGEBRAS 1 1. THE CONCEPT OF A LIE GROUP AND THE CLASSICAL EXAMPLES 1 2.
LEFT-INVARIANT VECTOR FIELDS AND ONE-PARAMETER GROUPS 11 3. THE
EXPONENTIAL MAP 22 4. HOMOGENEOUS SPACES AND QUOTIENT GROUPS 30 5.
INVARIANT INTEGRATION 40 6. CLIFFORD ALGEBRAS AND SPINOR GROUPS 54
CHAPTER II ELEMENTARY REPRESENTATION THEORY 64 1. REPRESENTATIONS 65 2.
SEMISIMPLE MODULES 72 3. LINEAR ALGEBRA AND REPRESENTATIONS 74 4.
CHARACTERS AND ORTHOGONALITY RELATIONS 77 5. REPRESENTATIONS OF SU(2),
SO(3), U(2), AND 0(3). 84 6. REAL AND QUATERNIONIC REPRESENTATIONS 93 7.
THE CHARACTER RING AND THE REPRESENTATION RING 102 8. REPRESENTATIONS OF
ABELIAN GROUPS 107 9. REPRESENTATIONS OF LIE ALGEBRAS 111 10. THE LIE
ALGEBRA SL(2,C) 115 CHAPTER III REPRESENTATIVE FUNCTIONS 123 1. ALGEBRAS
OF REPRESENTATIVE FUNCTIONS 123 2. SOME ANALYSIS ON COMPACT CROUPS 129
3. THE THEOREM OF PETER AND WEYL 133 4. APPLICATIONS OF THE THEOREM OF
PETER AND WEYL 136 5. GENERAHZATIONS OF THE THEOREM OF PETER AND WEYL
138 6. INDUCED REPRESENTATIONS 143 X CONTENTS 7. TANNAKA-KREM DUALITY
146 8. THE COMPLEXIFICATION OF COMPACT LIE GROUPS 151 CHAPTER IV THE
MAXIMAL TORUS OF A COMPACT LIE GROUP 157 1. MAXIMAL TORI 157 2.
CONSEQUENCES OF THE CONJUGATION THEOREM 164 3. THE MAXIMAL TORI AND WEYL
GROUPS OF THE CLASSICAL GROUPS 169 4. CARTANSUBGROUPSOFNONCONNECTED
COMPACT GROUPS 176 CHAPTER V ROOT SYSTEMS 183 1. THE ADJOINT
REPRESENTATION AND GROUPS OF RANK 1 183 2. ROOTS AND WEYL CHAMBERS 189
3. ROOT SYSTEMS 197 4. BASES AND WEYL CHAMBERS 202 5. DYNKIN DIAGRAMS
209 6. THE ROOTS OF THE CLASSICAL GROUPS 216 7. THE FUNDAMENTAL GROUP,
THE CENTER AND THE STIEFEL DIAGRAM 223 8. THE STRUCTURE OF THE COMPACT
GROUPS 232 CHAPTER VI IRREDUCIBLE CHARACTERS AND WEIGHTS 239 1. THE WEYL
CHARACTER FORMULA 239 2. THE DOMINANT WEIGHT AND THE STRUCTURE OF THE
REPRESENTATION RING 249 3. THE MULTIPLICITIES OF THE WEIGHTS OF AN
IRREDUCIBLE REPRESENTATION 257 4. REPRESENTATIONS OF REAL OR
QUATERNIONIC TYPE 261 5. REPRESENTATIONS OF THE CLASSICAL GROUPS 265 6.
REPRESENTATIONS OF THE SPINOR GROUPS 278 7. REPRESENTATIONS OF THE
ORTHOGONAL GROUPS 292 BIBLIOGRAPHY 299 SYMBOL INDEX 305 SUBJECT INDEX
307
|
any_adam_object | 1 |
author | Bröcker, Theodor 1938- Tom Dieck, Tammo 1938- |
author_GND | (DE-588)106075284 (DE-588)124473091 |
author_facet | Bröcker, Theodor 1938- Tom Dieck, Tammo 1938- |
author_role | aut aut |
author_sort | Bröcker, Theodor 1938- |
author_variant | t b tb d t t dt dtt |
building | Verbundindex |
bvnumber | BV010669824 |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 |
callnumber-search | QA387 |
callnumber-sort | QA 3387 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 260 SK 340 |
classification_tum | MAT 202f MAT 225f |
ctrlnum | (OCoLC)34029194 (DE-599)BVBBV010669824 |
dewey-full | 512.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.5 |
dewey-search | 512.5 |
dewey-sort | 3512.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | Corr. 2. printing |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02714nam a2200673 cb4500</leader><controlfield tag="001">BV010669824</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20050221 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960311s1995 gw a||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">946824304</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540136789</subfield><subfield code="c">(Berlin ...) Pp.</subfield><subfield code="9">3-540-13678-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387136789</subfield><subfield code="c">(New York ...) Pp.</subfield><subfield code="9">0-387-13678-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)34029194</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010669824</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA387</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 202f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 225f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bröcker, Theodor</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)106075284</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representations of compact Lie groups</subfield><subfield code="c">Theodor Bröcker ; Tammo tom Dieck</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Corr. 2. printing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 313 S.</subfield><subfield code="b">24 Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">98</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 299 - 303</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of Lie groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kompakte Lie-Gruppe</subfield><subfield code="0">(DE-588)4164846-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Repräsentation</subfield><subfield code="0">(DE-588)4137492-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kompakte Gruppe</subfield><subfield code="0">(DE-588)4164840-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kompakte Lie-Gruppe</subfield><subfield code="0">(DE-588)4164846-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kompakte Gruppe</subfield><subfield code="0">(DE-588)4164840-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Repräsentation</subfield><subfield code="0">(DE-588)4137492-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tom Dieck, Tammo</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124473091</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">98</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">98</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007122387&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007122387</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV010669824 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:56:58Z |
institution | BVB |
isbn | 3540136789 0387136789 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007122387 |
oclc_num | 34029194 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-11 |
owner_facet | DE-91 DE-BY-TUM DE-11 |
physical | X, 313 S. 24 Ill. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Bröcker, Theodor 1938- Verfasser (DE-588)106075284 aut Representations of compact Lie groups Theodor Bröcker ; Tammo tom Dieck Corr. 2. printing New York [u.a.] Springer 1995 X, 313 S. 24 Ill. txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 98 Literaturverz. S. 299 - 303 Lie groups Representations of Lie groups Kompakte Lie-Gruppe (DE-588)4164846-8 gnd rswk-swf Repräsentation (DE-588)4137492-7 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Kompakte Gruppe (DE-588)4164840-7 gnd rswk-swf Kompakte Lie-Gruppe (DE-588)4164846-8 s Darstellungstheorie (DE-588)4148816-7 s DE-604 Lie-Gruppe (DE-588)4035695-4 s 1\p DE-604 Kompakte Gruppe (DE-588)4164840-7 s 2\p DE-604 Repräsentation (DE-588)4137492-7 s 3\p DE-604 Tom Dieck, Tammo 1938- Verfasser (DE-588)124473091 aut Graduate texts in mathematics 98 (DE-604)BV000000067 98 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007122387&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bröcker, Theodor 1938- Tom Dieck, Tammo 1938- Representations of compact Lie groups Graduate texts in mathematics Lie groups Representations of Lie groups Kompakte Lie-Gruppe (DE-588)4164846-8 gnd Repräsentation (DE-588)4137492-7 gnd Lie-Gruppe (DE-588)4035695-4 gnd Darstellungstheorie (DE-588)4148816-7 gnd Kompakte Gruppe (DE-588)4164840-7 gnd |
subject_GND | (DE-588)4164846-8 (DE-588)4137492-7 (DE-588)4035695-4 (DE-588)4148816-7 (DE-588)4164840-7 |
title | Representations of compact Lie groups |
title_auth | Representations of compact Lie groups |
title_exact_search | Representations of compact Lie groups |
title_full | Representations of compact Lie groups Theodor Bröcker ; Tammo tom Dieck |
title_fullStr | Representations of compact Lie groups Theodor Bröcker ; Tammo tom Dieck |
title_full_unstemmed | Representations of compact Lie groups Theodor Bröcker ; Tammo tom Dieck |
title_short | Representations of compact Lie groups |
title_sort | representations of compact lie groups |
topic | Lie groups Representations of Lie groups Kompakte Lie-Gruppe (DE-588)4164846-8 gnd Repräsentation (DE-588)4137492-7 gnd Lie-Gruppe (DE-588)4035695-4 gnd Darstellungstheorie (DE-588)4148816-7 gnd Kompakte Gruppe (DE-588)4164840-7 gnd |
topic_facet | Lie groups Representations of Lie groups Kompakte Lie-Gruppe Repräsentation Lie-Gruppe Darstellungstheorie Kompakte Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007122387&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT brockertheodor representationsofcompactliegroups AT tomdiecktammo representationsofcompactliegroups |