Optimal sorting on a hypercube:
Abstract: "We present a parallel algorithm for sorting a sequence of n numbers on a hypercube with p processors in [formula] time ([formula], [formula]). The cost of the algorithm is [formula], which is optimal. A key step in the algorithm is to balance the distribution of data among the proces...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Kingston, Ontario, Canada
1989
|
Schriftenreihe: | Queen's University <Kingston, Ontario> / Department of Computing and Information Science: Technical report
255 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We present a parallel algorithm for sorting a sequence of n numbers on a hypercube with p processors in [formula] time ([formula], [formula]). The cost of the algorithm is [formula], which is optimal. A key step in the algorithm is to balance the distribution of data among the processors at each iteration. The technique we describe to accomplish this is interesting in its own right, and we believe it to be of general applicability to other algorithms for the hypercube." |
Beschreibung: | 16 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010657360 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 960315s1989 |||| 00||| engod | ||
035 | |a (OCoLC)21268423 | ||
035 | |a (DE-599)BVBBV010657360 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
100 | 1 | |a Qiu, Ke |e Verfasser |4 aut | |
245 | 1 | 0 | |a Optimal sorting on a hypercube |c by Ke Qiu and Selim G. Akl |
264 | 1 | |a Kingston, Ontario, Canada |c 1989 | |
300 | |a 16 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Queen's University <Kingston, Ontario> / Department of Computing and Information Science: Technical report |v 255 | |
520 | 3 | |a Abstract: "We present a parallel algorithm for sorting a sequence of n numbers on a hypercube with p processors in [formula] time ([formula], [formula]). The cost of the algorithm is [formula], which is optimal. A key step in the algorithm is to balance the distribution of data among the processors at each iteration. The technique we describe to accomplish this is interesting in its own right, and we believe it to be of general applicability to other algorithms for the hypercube." | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Computer science |x Mathematics | |
650 | 4 | |a Parallel processing (Electronic computers) | |
700 | 1 | |a Akl, Selim G. |e Verfasser |4 aut | |
810 | 2 | |a Department of Computing and Information Science: Technical report |t Queen's University <Kingston, Ontario> |v 255 |w (DE-604)BV010020284 |9 255 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007113780 |
Datensatz im Suchindex
_version_ | 1804125136383639552 |
---|---|
any_adam_object | |
author | Qiu, Ke Akl, Selim G. |
author_facet | Qiu, Ke Akl, Selim G. |
author_role | aut aut |
author_sort | Qiu, Ke |
author_variant | k q kq s g a sg sga |
building | Verbundindex |
bvnumber | BV010657360 |
ctrlnum | (OCoLC)21268423 (DE-599)BVBBV010657360 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01609nam a2200325 cb4500</leader><controlfield tag="001">BV010657360</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960315s1989 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)21268423</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010657360</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Qiu, Ke</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal sorting on a hypercube</subfield><subfield code="c">by Ke Qiu and Selim G. Akl</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Kingston, Ontario, Canada</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">16 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Queen's University <Kingston, Ontario> / Department of Computing and Information Science: Technical report</subfield><subfield code="v">255</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We present a parallel algorithm for sorting a sequence of n numbers on a hypercube with p processors in [formula] time ([formula], [formula]). The cost of the algorithm is [formula], which is optimal. A key step in the algorithm is to balance the distribution of data among the processors at each iteration. The technique we describe to accomplish this is interesting in its own right, and we believe it to be of general applicability to other algorithms for the hypercube."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parallel processing (Electronic computers)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Akl, Selim G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computing and Information Science: Technical report</subfield><subfield code="t">Queen's University <Kingston, Ontario></subfield><subfield code="v">255</subfield><subfield code="w">(DE-604)BV010020284</subfield><subfield code="9">255</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007113780</subfield></datafield></record></collection> |
id | DE-604.BV010657360 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:56:46Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007113780 |
oclc_num | 21268423 |
open_access_boolean | |
physical | 16 S. |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
record_format | marc |
series2 | Queen's University <Kingston, Ontario> / Department of Computing and Information Science: Technical report |
spelling | Qiu, Ke Verfasser aut Optimal sorting on a hypercube by Ke Qiu and Selim G. Akl Kingston, Ontario, Canada 1989 16 S. txt rdacontent n rdamedia nc rdacarrier Queen's University <Kingston, Ontario> / Department of Computing and Information Science: Technical report 255 Abstract: "We present a parallel algorithm for sorting a sequence of n numbers on a hypercube with p processors in [formula] time ([formula], [formula]). The cost of the algorithm is [formula], which is optimal. A key step in the algorithm is to balance the distribution of data among the processors at each iteration. The technique we describe to accomplish this is interesting in its own right, and we believe it to be of general applicability to other algorithms for the hypercube." Informatik Mathematik Computer science Mathematics Parallel processing (Electronic computers) Akl, Selim G. Verfasser aut Department of Computing and Information Science: Technical report Queen's University <Kingston, Ontario> 255 (DE-604)BV010020284 255 |
spellingShingle | Qiu, Ke Akl, Selim G. Optimal sorting on a hypercube Informatik Mathematik Computer science Mathematics Parallel processing (Electronic computers) |
title | Optimal sorting on a hypercube |
title_auth | Optimal sorting on a hypercube |
title_exact_search | Optimal sorting on a hypercube |
title_full | Optimal sorting on a hypercube by Ke Qiu and Selim G. Akl |
title_fullStr | Optimal sorting on a hypercube by Ke Qiu and Selim G. Akl |
title_full_unstemmed | Optimal sorting on a hypercube by Ke Qiu and Selim G. Akl |
title_short | Optimal sorting on a hypercube |
title_sort | optimal sorting on a hypercube |
topic | Informatik Mathematik Computer science Mathematics Parallel processing (Electronic computers) |
topic_facet | Informatik Mathematik Computer science Mathematics Parallel processing (Electronic computers) |
volume_link | (DE-604)BV010020284 |
work_keys_str_mv | AT qiuke optimalsortingonahypercube AT aklselimg optimalsortingonahypercube |