Mathematica for physics:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Reading, Mass. [u.a.]
Addison-Wesley
1995
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIII, 436 S. Ill., graph. Darst. |
ISBN: | 0201537966 9780201537963 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV010605640 | ||
003 | DE-604 | ||
005 | 20120306 | ||
007 | t | ||
008 | 960212s1995 ad|| |||| 00||| eng d | ||
020 | |a 0201537966 |9 0-201-53796-6 | ||
020 | |a 9780201537963 |9 978-0201-53796-3 | ||
035 | |a (OCoLC)301505343 | ||
035 | |a (DE-599)BVBBV010605640 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-92 |a DE-83 |a DE-11 |a DE-188 | ||
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
084 | |a ST 630 |0 (DE-625)143685: |2 rvk | ||
100 | 1 | |a Zimmerman, Robert L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematica for physics |c Robert L. Zimmerman ; Fredrick I. Olness |
264 | 1 | |a Reading, Mass. [u.a.] |b Addison-Wesley |c 1995 | |
300 | |a XXIII, 436 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Physique mathématique | |
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematica |g Programm |0 (DE-588)4268208-3 |2 gnd |9 rswk-swf |
655 | 4 | |a Matériel didactique | |
689 | 0 | 0 | |a Mathematica |g Programm |0 (DE-588)4268208-3 |D s |
689 | 0 | 1 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mathematica |g Programm |0 (DE-588)4268208-3 |D s |
689 | 1 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 1 | |5 DE-188 | |
700 | 1 | |a Olness, Fredrick I. |e Verfasser |4 aut | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007074515&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007074515 |
Datensatz im Suchindex
_version_ | 1804125079124049920 |
---|---|
adam_text | MATHEMATICAL FOR PHYSICS ROBERT L. ZIMMERMAN UNIVERSITY OF OREGON
FREDRICK I. OLNESS SOUTHERN METHODIST UNIVERSITY SUB GDTTINGEN 204
354161 ADDISON-WESLEY PUBLISHING COMPANY READING, MASSACHUSETTS * MENLO
PARK, CALIFORNIA NEW YORK * DON MILLS, ONTARIO WOKINGHAM, ENGLAND *
AMSTERDAM * BONN . SYDNEY * SINGAPORE * TOKYO * MADRID SAN JUAN * MILAN
* PARIS CONTENTS FOREWORD V INTRODUCTION VII TROUBLESHOOTING XI CHAPTER
1. GETTING STARTED 1 1.1 1.2 1.3 1.4 1.5 INTRODUCTION 1 * 1.1.1 1.1.2
COMPUTERS AS A TOOL 1 SUGGESTIONS ON APPROACHING THE EXERCISES
ARITHMETIC AND ALGEBRA 2 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8
ARITHMETIC AND NOTATION 2 ALGEBRA 3 MAPPING EXPRESSIONS 3 RULES 4
CONJUGATION 5 USER-DEFINED COMPLEX CONJUGATE RULE 5 ALGEBRAIC EQUATIONS
5 THREADING EXPRESSIONS 7 FUNCTIONS AND PROCEDURES 7 1.3.1 1.3.2 1.3.3
1.3.4 1.3.5 USER-DEFINED FUNCTIONS 7 DISCONTINUOUS FUNCTIONS 8
NONANALYTIC FUNCTIONS 8 RULES 9 PROCEDURES 10 MISCELLANEOUS 10 1.4.1
1.4.2 1.4.3 PACKAGES 10 CONTEXTS 11 PROTECTING COMMANDS 12 CALCULUS 12
XV XVI CONTENTS 1.5.1 INTEGRATION 12 1.5.2 ANALYTIC SOLUTIONS OF
DIFFERENTIAL EQUATIONS 13 1.5.3 CHANGING VARIABLES AND PURE FUNCTIONS 13
1.5.4 NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS 14 1.6 GRAPHICS 15
1.6.1 ANIMATED PLOTS 15 1.6.2 VECTOR FIELD PLOTS 16 1.6.3 SHADOWING 16
1.6.4 THREE-DIMENSIONAL GRAPHICS 18 1.6.5 SPACE CURVE 18 1.7 EXERCISES
18 CHAPTER 2. GENERAL PHYSICS 23 2.1 INTRODUCTION 23 2.2 GENERAL PHYSICS
23 2.2.1 NEWTONIAN MOTION 23 2.2.2 ELECTRICITY, MAGNETISM, AND CIRCUITS
24 2.3 MATHEMATICAL COMMANDS 24 2.3.1 PACKAGES 24 2.3.2 USER-DEFINED
PROCEDURES 25 PROCEDURE TO FIND A LEAST-SQUARES FIT TO A SET OF DATA
25 EXAMPLE: SJOPE OF A STRAIGHT LINE 25 EXAMPLE: AN EXPONENTIAL 25
PROCEDURE TO FIND THE ELECTRIC POTENTIAL FOR POINT CHARGES 26 EXAMPLE:
DIPOLE 26 2.3.3 PROTECT USER-DEFINED PROCEDURES 26 2.4 PROBLEMS 26 2.4.1
PROJECTILE MOTION IN A CONSTANT GRAVITATIONAL FIELD 26 PROBLEM 1: ESCAPE
VELOCITY 26 PROBLEM 2: PROJECTILE IN A UNIFORM GRAVITATIONAL FIELD 27
PROBLEM 3: PROJECTILE WITH AIR RESISTANCE 31 PROBLEM 4: ROCKET WITH
VARYING MASS 36 2.4.2 PROJECTILE MOTION IN ROTATING REFERENCE FRAMES 42
PROBLEM 1: CORIOLIS AND CENTRIFUGAL FORCES 42 PROBLEM 2: FOUCAULT
PENDULUM 47 2.4.3 ELECTRICITY AND MAGNETISM 52 PROBLEM 1: CHARGED DISK
52 PROBLEM 2: UNIFORMLY CHARGED SPHERE 54 PROBLEM 3: ELECTRIC DIPOLE 60
PROBLEM 4: MAGNETIC VECTOR POTENTIAL FOR A LINEAR CURRENT 63 2.4.4
CIRCUITS 66 PROBLEM 1: SERIES RC CIRCUIT 66 PROBLEM 2: SERIES RL LOOP 68
PROBLEM 3: RLC LOOP 71 CONTENTS , XVII 2.4.5 MODERN PHYSICS 75 PROBLEM
1: THE BOHR ATOM 75 PROBLEM 2: RELATIVISTIC COLLISION 77 2.5 UNSOLVED
PROBLEMS 79 CHAPTER 3. OSCILLATING SYSTEMS 83 3.1 INTRODUCTION 83 3.1.1
OSCILLATIONS 83 POTENTIALS 83 PHASE PLANES 83 SMALL OSCILLATIONS AND
NORMAL MODES 84 3.2 MATHEMATICA COMMANDS 84 3.2.1 PACKAGES 84 3.2.2
USER-DEFINED PROCEDURES 85 SERIES EXPANSION FOR SECOND-ORDER EQUATION 85
EXAMPLE 1: SECOND ORDER SOLUTION 85 EXAMPLE 2: HOW THE DIF F SERIESONE
ROUTINE WORKS 86 PHASE PLOT FOR ONE-DIMENSIONAL SYSTEM 87 EXAMPLE: PHASE
PLOTS FOR HARMONIC MOTION 87 TIME BEHAVIOR OF PHASE PLOT FOR A
ONE-DIMENSIONAL SYSTEM 88 EXAMPLE: TIME-EVOLVED PHASE PLOTS FOR HARMONIC
MOTION 88 DOUBLEPLOT: PHASE PLOTS AND TIME EVOLUTION FOR A
ONE-DIMENSIONAL SYSTEM 89 EXAMPLE: PHASE PLOTS AND TIME EVOLUTION FOR
HARMONIC MOTION 89 FOURIER SPECTRUM OF A ONE-DIMENSIONAL OSCILLATING
SYSTEM 89 EXAMPLE: FAST FOURIER TRANSFORM 90 EIGENVALUES AND
EIGENVECTORS FOR SMALL OSCILLATING SYSTEMS 90 EXAMPLE: TWO COUPLED
PARTICLES 91 ANIMATION FOR LINEAR MOTION 93 EXAMPLE: LINEAR HARMONIC
OSCILLATOR 93 3.2.3 PROTECT USER-DEFINED PROCEDURES 94 3.3 PROBLEMS 94
3.3.1 LINEAR OSCILLATIONS 94 PROBLEM 1: ANALYSIS OF LINEAR OSCILLATOR 94
PROBLEM 2: SOLUTION OF LINEAR OSCILLATOR 97 PROBLEM 3: DAMPED LINEAR
OSCILLATOR 99 PROBLEM 4: DAMPED HARMONIC OSCILLATOR AND DRIVING FORCES
104 3.3.2 NONLINEAR OSCILLATIONS 109 PROBLEM 1: DUFFING S OSCILLATOR
EQUATION 109 PROBLEM 2: FORCED DUFFING OSCILLATOR FOR DOUBLE-WELL
POTENTIAL 114 PROBLEM 3: VAN DER POLE OSCILLATOR AND LIMITING CYCLES 118
PROBLEM 4: MOTION OF A DAMPED, FORCED NONLINEAR PENDULUM 121 XVIII
CONTENTS 3.3.3 SMALL OSCILLATIONS 124 PROBLEM 1: TWO COUPLED HARMONIC
OSCILLATORS 124 PROBLEM 2: THREE COUPLED HARMONIC OSCILLATORS 130
PROBLEM 3: DOUBLE PENDULUM 135 3.4 UNSOLVED PROBLEMS 139 CHAPTER 4.
LAGRANGIANS AND HAMILTONIANS 143 4.1 INTRODUCTION 143 4.1.1 LAGRANGE S
EQUATIONS 143 GENERALIZED COORDINATES AND CONSTRAINTS 143 LAGRANGIAN 144
NONHOLONOMIC CONSTRAINTS AND LAGRANGIAN MULTIPLIERS 144 4.1.2 HAMILTON S
AND HAMILTON-JACOBI EQUATIONS 144 HAMILTON S EQUATIONS 144
HAMILTON-JACOBI TECHNIQUE 145 4.1.3 MATHEMATICA COMMANDS 146 PACKAGES
146 USER-DEFINED RULES 147 HYPERBOLICTOCOMPLEX AND COMPLEXTOHYPERBOLIC
147 EXAMPLE: HYPERBOLICTOCOMPLEX AND COMPLEXTOHYPERBOLIC 147
USER-DEFINED PROCEDURES 147 FINDING LAGRANGE S EQUATIONS 147 EXAMPLE:
LAGRANGE S EQUATION FOR A PARTICLE IN A POTENTIAL V[X] 148 FINDING THE
CANONICAL MOMENTUM, HAMILTONIAN, AND EQUATIONS OF MOTION 148 EXAMPLE 1:
HAMILTON S EQUATIONS OF MOTION IN ONE DIMENSION 149 EXAMPLE 2:
HAMILTON S EQUATIONS OF MOTION IN TWO DIMENSIONS 149 EXAMPLE 3: HOW
HAMILTON WORKS 150 FINDING THE CANONICAL MOMENTUM, HAMILTON S PRINCIPAL
FUNCTION, AND HAMILTON-JACOBI EQUATIONS 151 EXAMPLE 1: ONE-DIMENSIONAL
PARTICLE IN A POTENTIAL V[X] 151 EXAMPLE 2: TWO-DIMENSIONAL PARTICLE IN
A POTENTIAL V[X] 152 EXAMPLE 3: HOW HAMILTONJACOBI WORKS 152 SERIES
EXPANSION SOLUTION FOR SECOND-ORDER EQUATION 153 SERIES EXPANSION
SOLUTION FOR TWO FIRST-ORDER EQUATIONS 153 EXAMPLE 1: EXPANSION OF
HARMONIC OSCILLATOR 154 EXAMPLE 2: HOW FIRSTDIFF SERIES WORKS 154
FIRST-ORDER PERTURBATION SOLUTION 155 EXAMPLE 1: PERTURBED HARMONIC
OSCILLATOR 156 EXAMPLE 2: DETAILS OF FIRSTORDERPERT 156 4.1.4 PROTECT
USER-DEFINED PROCEDURES 158 CONTENTS XIX 4.2 PROBLEMS 158 4.2.1
LAGRANGIAN PROBLEMS 158 PROBLEM 1: ATWOOD MACHINE 158 PROBLEM 2: BEAD
SLIDING ON A ROTATING WIRE 161 PROBLEM 3: BEAD ON A ROTATING HOOP 165
PROBLEM 4: HOOP ROLLING ON AN INCLINE 171 PROBLEM 5: SPHERE ROLLING ON A
FIXED SPHERE 174 PROBLEM 6: MASS FALLING THROUGH A HOLE IN A TABLE 178
4.2.2 ORBITING BODIES 183 PROBLEM 1: EQUIVALENT ONE-BODY PROBLEM 183
PROBLEM 2: KEPLER PROBLEM 188 PROBLEM 3: PRECESSING ELLIPSE AND
GENERALIZED KEPLER PROBLEM 192 PROBLEM 4: NUMERICAL SOLUTION FOR ORBITS
WITH CENTRAL FORCES 195 PROBLEM 5: QUADRIPOLE POTENTIAL AND PERTURBATIVE
SOLUTIONS 199 4.2.3 HAMILTON AND HAMILTON-JACOBI PROBLEMS 206 PROBLEM 1:
HARMONIC OSCILLATOR AND HAMILTON S EQUATIONS 206 PROBLEM 2: HAMILTON S
EQUATIONS IN CYLINDRICAL AND SPHERICAL COORDINATES 210 PROBLEM 3:
SPHERICAL PENDULUM AND HAMILTON S EQUATIONS 213 PROBLEM 4: HANRPNIC
OSCILLATOR AND HAMILTON-JACOBI EQUATIONS 218 PROBLEM 5: KEPLER S PROBLEM
AND HAMILTON-JACOBI EQUATIONS 221 4.3 UNSOLVED PROBLEMS 225 CHAPTER 5.
ELECTROSTATICS 229 5.1 INTRODUCTION 229 5.1.1 ELECTRIC FIELD AND
POTENTIAL 229 ELECTRIC FIELD 229 ELECTROSTATIC POTENTIAL 229 . 5.1.2
LAPLACE S EQUATION 230 CARTESIAN COORDINATES 230 CYLINDRICAL
COORDINATES 230 SPHERICAL COORDINATES 230 5.1.3 MATHEMATICA COMMANDS 231
PACKAGES 231 USER-DEFINED PROCEDURES 231 OPERATOR: TRIGTOY 231 EXAMPLE
232 OPERATOR: TRIGTOP 232 EXAMPLE 233 MONOPOLE 233 EXAMPLE 233
POTENTIALEXPANSION 234 EXAMPLE: ASYMPTOTIC POTENTIAL OF TWO-POINT
CHARGES 234 XX CONTENTS VEPLOT 234 EXAMPLE: EQUIPOTENTIAL SURFACE AND
ELECTRIC FIELD OF TWO-POINT CHARGES 235 MULTIPOLESH 236 EXAMPLE:
POTENTIAL OF NON-AXIALLY SYMMETRIC CHARGE DENSITY 236 MULTIPOLEP 237
EXAMPLE: POTENTIAL OF AN AXIALLY SYMMETRIC CHARGE DISTRIBUTION 238 5.1.4
PROTECT USER-DEFINED PROCEDURES 238 5.2 PROBLEMS 238 5.2.1 POINT
CHARGES, MULTIPOLES, AND IMAGE PROBLEMS 238 PROBLEM 1: SUPERPOSITION OF
POINT CHARGES 238 PROBLEM 2: POINT CHARGES AND GROUNDED PLANE 242
PROBLEM 3: POINT CHARGES AND GROUNDED SPHERE 245 PROBLEM 4: LINE CHARGE
AND GROUNDED PLANE 249 PROBLEM 5: MULTIPOLE EXPANSION OF A CHARGE
DISTRIBUTION 252 5.2.2 CARTESIAN AND CYLINDRICAL COORDINATES 258 PROBLEM
1 : SEPARATION OF VARIABLES IN CARTESIAN AND CYLINDRICAL COORDINATES 258
PROBLEM 2 : POTENTIAL AND A RECTANGULAR GROOVE 261 PROBLEM 3:
RECTANGULAR CONDUIT 265 PROBLEM 4: POTENTIAL INSIDE A RECTANGULAR BOX
WITH FIVE SIDES AT ZERO POTENTIAL 269 PROBLEM 5: CONDUCTING CYLINDER
WITH A POTENTIAL ON THE SURFACE 274 5.2.3 LEGENDRE POLYNOMIALS AND
SPHERICAL HARMONICS 278 PROBLEM 1: A CHARGED RING 278 PROBLEM 2:
GROUNDED SPHERE IN AN ELECTRIC FIELD 285 PROBLEM 3: SPHERE WITH AN
AXIALLY SYMMETRIC CHARGE DISTRIBUTION 288 PROBLEM 4: SPHERE WITH A GIVEN
AXIALLY SYMMETRIC POTENTIAL 292 PROBLEM 5: SPHERE WITH UPPER HEMISPHERE
V AND LOWER HEMISPHERE -V 295 5.3 UNSOLVED PROBLEMS 299 CHAPTER 6.
QUANTUM MECHANICS 303 6.1 INTRODUCTION 303 6.1.1 FOUNDATIONS OF QUANTUM
MECHANICS 303 HISTORICAL BEGINNINGS 303 TIME-INDEPENDENT QUANTUM
MECHANICS 304 6.1.2 MATHEMATICA COMMANDS 304 PACKAGES 304 USER-DEFINED
PROCEDURES AND RULES 304 CHANGE OF VARIABLES PROCEDURE 304 CONTENTS XXI
EXAMPLE: CHANGE OF VARIABLE 305 SERIES EXPANSION SOLUTION FOR
SECOND-ORDER EQUATION 305 HYPERBOLICTOCOMPLEX AND COMPLEXTOHYPERBOLIC 30
6 COMPLEX CONJUGATE RULE 306 EXAMPLE: COMPLEX EXPONENTIAL 306
USER-DEFINED SOLUTIONS OF DIFFERENTIAL EQUATIONS 307 SOLUTION: HERMITE
POLYNOMIALS 307 EXAMPLE: HERMITE SOLUTION 307 SOLUTION: LEGENDRE
POLYNOMIALS 307 EXAMPLE: LEGENDRE SOLUTION 307 USER-DEFINED
ONE-DIMENSIONAL WAVE PROPERTIES 308 ONE-DIMENSIONAL WAVE FUNCTION WITH
CONSTANT POTENTIAL 308 6.1.3 USER-DEFINED THREE-DIMENSIONAL QUANTUM
EQUATIONS 308 OPERATOR: SCHRODINGER 308 EXAMPLE: SPHERICAL POTENTIAL AND
SPHERICAL WAVE FUNCTION 308 OPERATOR: HAMILTONIAN 309 EXAMPLE: HARMONIC
OSCILLATOR 309 OPERATOR: FLUX 309 EXAMPLE: PLANE WAVE FLUX 309 6.1.4
PROTECT USER-DEFINED OPERATORS 310 6.2 PROBLEMS 310 6.2.1
ONE-DIMENSIONAL SCHRODINGER S EQUATION 310 PROBLEM 1: PARTICLE BOUND IN
AN INFINITE POTENTIAL WELL 310 PROBLEM 2: PARTICLE BOUND IN A FINITE
POTENTIAL WELL 314 PROBLEM 3: PARTICLE HITTING A FINITE STEP POTENTIAL
322 PROBLEM 4: PARTICLE PROPAGATING TOWARDS A RECTANGULAR POTENTIAL 328
PROBLEM 5: THE ONE-DIMENSIONAL HARMONIC OSCILLATOR 336 6.2.2
THREE-DIMENSIONAL SCHRODINGER S EQUATION 341 PROBLEM 1:
THREE-DIMENSIONAL HARMONIC OSCILLATOR IN CARTESIAN COORDINATES 341
PROBLEM 2: SCHRODINGER S EQUATION FOR SPHERICALLY SYMMETRIC POTENTIALS
344 * PROBLEM 3: PARTICLE IN AN INFINITE, SPHERICAL BOX 349 PROBLEM 4:
PARTICLE WITH NEGATIVE ENERGY IN A FINITE, SPHERICAL BOX 353 PROBLEM 5:
THE HYDROGEN ATOM IN SPHERICAL COORDINATES 359 PROBLEM 6: SEPARATION IN
CYLINDRICAL AND PARABOLOIDAL COORDINATES 364 6.3 UNSOLVED PROBLEMS 369
CHAPTER 7. RELATIVITY AND COSMOLOGY 371 7.1 INTRODUCTION 371 7.1.1
SPECIAL RELATIVITY 371 THE TWO BASIC POSTULATES OF SPECIAL RELATIVITY
372 XXII CONTENTS LORENTZ TRANSFORMATIONS 372 COVARIANT EQUATIONS AND
TENSORS 373 CARTESIAN COORDINATES AND FLAT SPACETIME 373 7.1.2 GENERAL
RELATIVITY AND COSMOLOGY 374 SPACETIME METRIC 374 FIELD EQUATIONS 374
FREE-FALLING TEST PARTICLES AND LIGHT TRAJECTORIES 374 ROBERTSON-WALKER
COSMOLOGY 375 7.1.3 MATHEMATICA COMMANDS 375 PACKAGES 375 USER-DEFINED
METRIC, BOOST, AND VELOCITY PARAMETERS 375 METRIC 375 RULE FOR
RELATIVISTIC VELOCITY PARAMETERS 376 BOOST ALONG THE X-AXIS 376
USER-DEFINED GEOMETRIC PROCEDURES 376 CHRISTOFFEL SYMBOLS 376 EXAMPLE:
CHRISTOFFEL SYMBOLS FOR A PSEUDO-EUCLIDEAN METRIC 377 CURVATURE TENSOR
377 EXAMPLE: CURVATURE TENSOR FOR PSEUDO-EUCLIDEAN METRIC 378 RICCI
TENSOR 378 EXAMPLE: RICCI T O ENSOR FOR GODEL METRIC 378 KILLING S
EQUATIONS 379 EXAMPLE: KILLING VECTOR EQUATIONS IN PSEUDO-EUCLIDEAN
SPACE 379 U EINSTEIN TENSOR 380 EXAMPLE: EINSTEIN TENSOR FOR WAVE METRIC
380 GEODESIC EQUATIONS 380 EXAMPLE: GEODESIES FOR A PSEUDO-EUCLIDEAN
METRIC 381 USER-DEFINED METRICS AND CHRISTOFFEL SYMBOLS 381
SCHWARZSCHILD METRIC 381 KERR METRIC 382 PROTECT USER-DEFINED OPERATORS
384 7.2 PROBLEMS 384 7.2.1 SPECIAL RELATIVITY PROBLEMS 384 PROBLEM 1:
DECAY OF A PARTICLE 384 PROBLEM 2: TWO-PARTICLE COLLISION 385 PROBLEM 3:
COMPTON SCATTERING 386 PROBLEM 4: MOVING MIRROR AND GENERALIZED SNELL S
LAW 389 PROBLEM 5: ONE-DIMENSIONAL MOTION OF A RELATIVISTIC PARTICLE
WITH CONSTANT ACCELERATION 392 PROBLEM 6: TWO-DIMENSIONAL MOTION OF A
RELATIVISTIC PARTICLE IN A. UNIFORM ELECTRIC FIELD 395 7.2.2 GENERAL
RELATIVITY AND COSMOLOGY 398 PROBLEM 1: SCHWARZSCHILD SOLUTION IN NULL
COORDINATES 398 CONTENTS XXIII PROBLEM 2: THE HORIZONS AND SURFACES OF
INFINITE REDSHIFT 400 PROBLEM 3: KILLING VECTORS AND CONSTANTS OF MOTION
402 PROBLEM 4: POTENTIAL ANALYSIS FOR TIMELIKE GEODESIES 405 PROBLEM 5:
TIME IT TAKES TO FALL INTO A BLACK HOLE 408 PROBLEM 6: CIRCULAR
GEODESIES FOR THE SCHWARZSCHILD METRIC 414 PROBLEM 7: FIELD EQUATIONS
FOR ROBERTSON-WALKER COSMOLOGY 416 PROBLEM 8: ZERO-PRESSURE COSMOLOGICAL
MODELS 421 PROBLEM 9: THE EXPANSION AND AGE OF THE STANDARD MODEL 424
7.3 UNSOLVED PROBLEMS 430 INDEX 433
|
any_adam_object | 1 |
author | Zimmerman, Robert L. Olness, Fredrick I. |
author_facet | Zimmerman, Robert L. Olness, Fredrick I. |
author_role | aut aut |
author_sort | Zimmerman, Robert L. |
author_variant | r l z rl rlz f i o fi fio |
building | Verbundindex |
bvnumber | BV010605640 |
classification_rvk | ST 601 ST 630 |
ctrlnum | (OCoLC)301505343 (DE-599)BVBBV010605640 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01757nam a2200445 c 4500</leader><controlfield tag="001">BV010605640</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120306 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960212s1995 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0201537966</subfield><subfield code="9">0-201-53796-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780201537963</subfield><subfield code="9">978-0201-53796-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)301505343</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010605640</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 630</subfield><subfield code="0">(DE-625)143685:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zimmerman, Robert L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematica for physics</subfield><subfield code="c">Robert L. Zimmerman ; Fredrick I. Olness</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Reading, Mass. [u.a.]</subfield><subfield code="b">Addison-Wesley</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 436 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physique mathématique</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematica</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4268208-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Matériel didactique</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematica</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4268208-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematica</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4268208-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olness, Fredrick I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007074515&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007074515</subfield></datafield></record></collection> |
genre | Matériel didactique |
genre_facet | Matériel didactique |
id | DE-604.BV010605640 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:55:51Z |
institution | BVB |
isbn | 0201537966 9780201537963 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007074515 |
oclc_num | 301505343 |
open_access_boolean | |
owner | DE-20 DE-92 DE-83 DE-11 DE-188 |
owner_facet | DE-20 DE-92 DE-83 DE-11 DE-188 |
physical | XXIII, 436 S. Ill., graph. Darst. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Addison-Wesley |
record_format | marc |
spelling | Zimmerman, Robert L. Verfasser aut Mathematica for physics Robert L. Zimmerman ; Fredrick I. Olness Reading, Mass. [u.a.] Addison-Wesley 1995 XXIII, 436 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Physique mathématique Physik (DE-588)4045956-1 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Mathematica Programm (DE-588)4268208-3 gnd rswk-swf Matériel didactique Mathematica Programm (DE-588)4268208-3 s Physik (DE-588)4045956-1 s DE-604 Mathematische Physik (DE-588)4037952-8 s DE-188 Olness, Fredrick I. Verfasser aut GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007074515&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Zimmerman, Robert L. Olness, Fredrick I. Mathematica for physics Physique mathématique Physik (DE-588)4045956-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Mathematica Programm (DE-588)4268208-3 gnd |
subject_GND | (DE-588)4045956-1 (DE-588)4037952-8 (DE-588)4268208-3 |
title | Mathematica for physics |
title_auth | Mathematica for physics |
title_exact_search | Mathematica for physics |
title_full | Mathematica for physics Robert L. Zimmerman ; Fredrick I. Olness |
title_fullStr | Mathematica for physics Robert L. Zimmerman ; Fredrick I. Olness |
title_full_unstemmed | Mathematica for physics Robert L. Zimmerman ; Fredrick I. Olness |
title_short | Mathematica for physics |
title_sort | mathematica for physics |
topic | Physique mathématique Physik (DE-588)4045956-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Mathematica Programm (DE-588)4268208-3 gnd |
topic_facet | Physique mathématique Physik Mathematische Physik Mathematica Programm Matériel didactique |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007074515&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zimmermanrobertl mathematicaforphysics AT olnessfredricki mathematicaforphysics |