A chordal preconditioner for large scale optimization:
We propose an automatic preconditioning scheme for large sparse numerical optimization. The strategy is based on an examination of the sparsity pattern of the Hessian matrix: using a graph-theoretic heuristic, a block diagonal approximation to the Hessian matrix is induced. The blocks are submatrice...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Ithaca, New York
1986
|
Schriftenreihe: | Cornell University <Ithaca, NY> / Department of Computer Science: Technical report
762 |
Schlagworte: | |
Zusammenfassung: | We propose an automatic preconditioning scheme for large sparse numerical optimization. The strategy is based on an examination of the sparsity pattern of the Hessian matrix: using a graph-theoretic heuristic, a block diagonal approximation to the Hessian matrix is induced. The blocks are submatrices of the Hessian matrix; furthermore, each block is chordal. That is, under a positive definiteness assumption, each block can be Cholesky factored without creating new nonzeroes (fill). Therefore the preconditioner is space efficient. We conduct a number of numerical experiments to determine the effectiveness of the preconditioner in the context of a linear conjugate gradient algorithm for optimization. |
Beschreibung: | 41 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010594799 | ||
003 | DE-604 | ||
005 | 19970310 | ||
007 | t | ||
008 | 960201s1986 |||| 00||| engod | ||
035 | |a (OCoLC)15994348 | ||
035 | |a (DE-599)BVBBV010594799 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
084 | |a MAT 910f |2 stub | ||
100 | 1 | |a Coleman, Thomas F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A chordal preconditioner for large scale optimization |
264 | 1 | |a Ithaca, New York |c 1986 | |
300 | |a 41 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Cornell University <Ithaca, NY> / Department of Computer Science: Technical report |v 762 | |
520 | 3 | |a We propose an automatic preconditioning scheme for large sparse numerical optimization. The strategy is based on an examination of the sparsity pattern of the Hessian matrix: using a graph-theoretic heuristic, a block diagonal approximation to the Hessian matrix is induced. The blocks are submatrices of the Hessian matrix; furthermore, each block is chordal. That is, under a positive definiteness assumption, each block can be Cholesky factored without creating new nonzeroes (fill). Therefore the preconditioner is space efficient. We conduct a number of numerical experiments to determine the effectiveness of the preconditioner in the context of a linear conjugate gradient algorithm for optimization. | |
650 | 4 | |a Heuristic programming | |
650 | 4 | |a Mathematical optimization | |
810 | 2 | |a Department of Computer Science: Technical report |t Cornell University <Ithaca, NY> |v 762 |w (DE-604)BV006185504 |9 762 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007065365 |
Datensatz im Suchindex
_version_ | 1804125066113318912 |
---|---|
any_adam_object | |
author | Coleman, Thomas F. |
author_facet | Coleman, Thomas F. |
author_role | aut |
author_sort | Coleman, Thomas F. |
author_variant | t f c tf tfc |
building | Verbundindex |
bvnumber | BV010594799 |
classification_tum | MAT 910f |
ctrlnum | (OCoLC)15994348 (DE-599)BVBBV010594799 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01713nam a2200313 cb4500</leader><controlfield tag="001">BV010594799</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19970310 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960201s1986 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)15994348</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010594799</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 910f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Coleman, Thomas F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A chordal preconditioner for large scale optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Ithaca, New York</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">41 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cornell University <Ithaca, NY> / Department of Computer Science: Technical report</subfield><subfield code="v">762</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">We propose an automatic preconditioning scheme for large sparse numerical optimization. The strategy is based on an examination of the sparsity pattern of the Hessian matrix: using a graph-theoretic heuristic, a block diagonal approximation to the Hessian matrix is induced. The blocks are submatrices of the Hessian matrix; furthermore, each block is chordal. That is, under a positive definiteness assumption, each block can be Cholesky factored without creating new nonzeroes (fill). Therefore the preconditioner is space efficient. We conduct a number of numerical experiments to determine the effectiveness of the preconditioner in the context of a linear conjugate gradient algorithm for optimization.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Technical report</subfield><subfield code="t">Cornell University <Ithaca, NY></subfield><subfield code="v">762</subfield><subfield code="w">(DE-604)BV006185504</subfield><subfield code="9">762</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007065365</subfield></datafield></record></collection> |
id | DE-604.BV010594799 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:55:39Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007065365 |
oclc_num | 15994348 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 41 S. |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
record_format | marc |
series2 | Cornell University <Ithaca, NY> / Department of Computer Science: Technical report |
spelling | Coleman, Thomas F. Verfasser aut A chordal preconditioner for large scale optimization Ithaca, New York 1986 41 S. txt rdacontent n rdamedia nc rdacarrier Cornell University <Ithaca, NY> / Department of Computer Science: Technical report 762 We propose an automatic preconditioning scheme for large sparse numerical optimization. The strategy is based on an examination of the sparsity pattern of the Hessian matrix: using a graph-theoretic heuristic, a block diagonal approximation to the Hessian matrix is induced. The blocks are submatrices of the Hessian matrix; furthermore, each block is chordal. That is, under a positive definiteness assumption, each block can be Cholesky factored without creating new nonzeroes (fill). Therefore the preconditioner is space efficient. We conduct a number of numerical experiments to determine the effectiveness of the preconditioner in the context of a linear conjugate gradient algorithm for optimization. Heuristic programming Mathematical optimization Department of Computer Science: Technical report Cornell University <Ithaca, NY> 762 (DE-604)BV006185504 762 |
spellingShingle | Coleman, Thomas F. A chordal preconditioner for large scale optimization Heuristic programming Mathematical optimization |
title | A chordal preconditioner for large scale optimization |
title_auth | A chordal preconditioner for large scale optimization |
title_exact_search | A chordal preconditioner for large scale optimization |
title_full | A chordal preconditioner for large scale optimization |
title_fullStr | A chordal preconditioner for large scale optimization |
title_full_unstemmed | A chordal preconditioner for large scale optimization |
title_short | A chordal preconditioner for large scale optimization |
title_sort | a chordal preconditioner for large scale optimization |
topic | Heuristic programming Mathematical optimization |
topic_facet | Heuristic programming Mathematical optimization |
volume_link | (DE-604)BV006185504 |
work_keys_str_mv | AT colemanthomasf achordalpreconditionerforlargescaleoptimization |