Predicting structure in sparse matrix computations:
We describe the results of an experiment in which the Nuprl proof development system was used in conjunction with a collection of simple proof-assisting programs to constructively prove a substantial theorem of number theory. We believe that these results indicate the promise of an approach to reaso...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Ithaca, New York
1986
|
Schriftenreihe: | Cornell University <Ithaca, NY> / Department of Computer Science: Technical report
750 |
Schlagworte: | |
Zusammenfassung: | We describe the results of an experiment in which the Nuprl proof development system was used in conjunction with a collection of simple proof-assisting programs to constructively prove a substantial theorem of number theory. We believe that these results indicate the promise of an approach to reasoning about computationally meaningful mathematics by which proof construction and the results of formal reasoning are mathematically comprehensible. |
Beschreibung: | 15 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010594461 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 960201s1986 |||| 00||| engod | ||
035 | |a (OCoLC)15729204 | ||
035 | |a (DE-599)BVBBV010594461 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Gilbert, John R. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Predicting structure in sparse matrix computations |
264 | 1 | |a Ithaca, New York |c 1986 | |
300 | |a 15 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Cornell University <Ithaca, NY> / Department of Computer Science: Technical report |v 750 | |
520 | 3 | |a We describe the results of an experiment in which the Nuprl proof development system was used in conjunction with a collection of simple proof-assisting programs to constructively prove a substantial theorem of number theory. We believe that these results indicate the promise of an approach to reasoning about computationally meaningful mathematics by which proof construction and the results of formal reasoning are mathematically comprehensible. | |
650 | 4 | |a Eigenvectors | |
650 | 4 | |a Linear programming | |
650 | 4 | |a Matrices | |
810 | 2 | |a Department of Computer Science: Technical report |t Cornell University <Ithaca, NY> |v 750 |w (DE-604)BV006185504 |9 750 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007065078 |
Datensatz im Suchindex
_version_ | 1804125065744220160 |
---|---|
any_adam_object | |
author | Gilbert, John R. |
author_facet | Gilbert, John R. |
author_role | aut |
author_sort | Gilbert, John R. |
author_variant | j r g jr jrg |
building | Verbundindex |
bvnumber | BV010594461 |
ctrlnum | (OCoLC)15729204 (DE-599)BVBBV010594461 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01423nam a2200313 cb4500</leader><controlfield tag="001">BV010594461</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960201s1986 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)15729204</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010594461</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gilbert, John R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting structure in sparse matrix computations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Ithaca, New York</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cornell University <Ithaca, NY> / Department of Computer Science: Technical report</subfield><subfield code="v">750</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">We describe the results of an experiment in which the Nuprl proof development system was used in conjunction with a collection of simple proof-assisting programs to constructively prove a substantial theorem of number theory. We believe that these results indicate the promise of an approach to reasoning about computationally meaningful mathematics by which proof construction and the results of formal reasoning are mathematically comprehensible.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eigenvectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Technical report</subfield><subfield code="t">Cornell University <Ithaca, NY></subfield><subfield code="v">750</subfield><subfield code="w">(DE-604)BV006185504</subfield><subfield code="9">750</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007065078</subfield></datafield></record></collection> |
id | DE-604.BV010594461 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:55:38Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007065078 |
oclc_num | 15729204 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 15 S. |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
record_format | marc |
series2 | Cornell University <Ithaca, NY> / Department of Computer Science: Technical report |
spelling | Gilbert, John R. Verfasser aut Predicting structure in sparse matrix computations Ithaca, New York 1986 15 S. txt rdacontent n rdamedia nc rdacarrier Cornell University <Ithaca, NY> / Department of Computer Science: Technical report 750 We describe the results of an experiment in which the Nuprl proof development system was used in conjunction with a collection of simple proof-assisting programs to constructively prove a substantial theorem of number theory. We believe that these results indicate the promise of an approach to reasoning about computationally meaningful mathematics by which proof construction and the results of formal reasoning are mathematically comprehensible. Eigenvectors Linear programming Matrices Department of Computer Science: Technical report Cornell University <Ithaca, NY> 750 (DE-604)BV006185504 750 |
spellingShingle | Gilbert, John R. Predicting structure in sparse matrix computations Eigenvectors Linear programming Matrices |
title | Predicting structure in sparse matrix computations |
title_auth | Predicting structure in sparse matrix computations |
title_exact_search | Predicting structure in sparse matrix computations |
title_full | Predicting structure in sparse matrix computations |
title_fullStr | Predicting structure in sparse matrix computations |
title_full_unstemmed | Predicting structure in sparse matrix computations |
title_short | Predicting structure in sparse matrix computations |
title_sort | predicting structure in sparse matrix computations |
topic | Eigenvectors Linear programming Matrices |
topic_facet | Eigenvectors Linear programming Matrices |
volume_link | (DE-604)BV006185504 |
work_keys_str_mv | AT gilbertjohnr predictingstructureinsparsematrixcomputations |