Ordered and unordered tree inclusion:
Abstract: "We consider the following problem: Given labeled trees P and T, can P be obtained from T by deleting nodes? Deleting a node v entails removing all edges incident to v, and if v has a parent u, replacing the edge from u to v by edges from u to the children of v. The problem is motivat...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Helsinki
1991
|
Schriftenreihe: | Tietojenkäsittelyopin Laitos <Helsinki>: [Series of publications / A]
1991,4 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We consider the following problem: Given labeled trees P and T, can P be obtained from T by deleting nodes? Deleting a node v entails removing all edges incident to v, and if v has a parent u, replacing the edge from u to v by edges from u to the children of v. The problem is motivated by the study of query languages for structured text data bases. Simple solutions to this problem require exponential time. For ordered trees we present an algorithm that requires [formula] time and space. We also consider the corresponding problem for unordered trees and give a proof of its NP-completeness." |
Beschreibung: | 22 Bl. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010585978 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 960125s1991 |||| 00||| engod | ||
035 | |a (OCoLC)31155453 | ||
035 | |a (DE-599)BVBBV010585978 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Kilpeläinen, Pekka |e Verfasser |4 aut | |
245 | 1 | 0 | |a Ordered and unordered tree inclusion |c Pekka Kilpeläinen ; Heikki Mannila |
264 | 1 | |a Helsinki |c 1991 | |
300 | |a 22 Bl. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Tietojenkäsittelyopin Laitos <Helsinki>: [Series of publications / A] |v 1991,4 | |
520 | 3 | |a Abstract: "We consider the following problem: Given labeled trees P and T, can P be obtained from T by deleting nodes? Deleting a node v entails removing all edges incident to v, and if v has a parent u, replacing the edge from u to v by edges from u to the children of v. The problem is motivated by the study of query languages for structured text data bases. Simple solutions to this problem require exponential time. For ordered trees we present an algorithm that requires [formula] time and space. We also consider the corresponding problem for unordered trees and give a proof of its NP-completeness." | |
650 | 4 | |a Trees (Graph theory) | |
700 | 1 | |a Mannila, Heikki |e Verfasser |4 aut | |
810 | 2 | |a A] |t Tietojenkäsittelyopin Laitos <Helsinki>: [Series of publications |v 1991,4 |w (DE-604)BV000904448 |9 1991,4 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007058339 |
Datensatz im Suchindex
_version_ | 1804125055900188672 |
---|---|
any_adam_object | |
author | Kilpeläinen, Pekka Mannila, Heikki |
author_facet | Kilpeläinen, Pekka Mannila, Heikki |
author_role | aut aut |
author_sort | Kilpeläinen, Pekka |
author_variant | p k pk h m hm |
building | Verbundindex |
bvnumber | BV010585978 |
ctrlnum | (OCoLC)31155453 (DE-599)BVBBV010585978 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01582nam a2200301 cb4500</leader><controlfield tag="001">BV010585978</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960125s1991 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)31155453</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010585978</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kilpeläinen, Pekka</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ordered and unordered tree inclusion</subfield><subfield code="c">Pekka Kilpeläinen ; Heikki Mannila</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Helsinki</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">22 Bl.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Tietojenkäsittelyopin Laitos <Helsinki>: [Series of publications / A]</subfield><subfield code="v">1991,4</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We consider the following problem: Given labeled trees P and T, can P be obtained from T by deleting nodes? Deleting a node v entails removing all edges incident to v, and if v has a parent u, replacing the edge from u to v by edges from u to the children of v. The problem is motivated by the study of query languages for structured text data bases. Simple solutions to this problem require exponential time. For ordered trees we present an algorithm that requires [formula] time and space. We also consider the corresponding problem for unordered trees and give a proof of its NP-completeness."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trees (Graph theory)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mannila, Heikki</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">A]</subfield><subfield code="t">Tietojenkäsittelyopin Laitos <Helsinki>: [Series of publications</subfield><subfield code="v">1991,4</subfield><subfield code="w">(DE-604)BV000904448</subfield><subfield code="9">1991,4</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007058339</subfield></datafield></record></collection> |
id | DE-604.BV010585978 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:55:29Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007058339 |
oclc_num | 31155453 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 22 Bl. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
record_format | marc |
series2 | Tietojenkäsittelyopin Laitos <Helsinki>: [Series of publications / A] |
spelling | Kilpeläinen, Pekka Verfasser aut Ordered and unordered tree inclusion Pekka Kilpeläinen ; Heikki Mannila Helsinki 1991 22 Bl. txt rdacontent n rdamedia nc rdacarrier Tietojenkäsittelyopin Laitos <Helsinki>: [Series of publications / A] 1991,4 Abstract: "We consider the following problem: Given labeled trees P and T, can P be obtained from T by deleting nodes? Deleting a node v entails removing all edges incident to v, and if v has a parent u, replacing the edge from u to v by edges from u to the children of v. The problem is motivated by the study of query languages for structured text data bases. Simple solutions to this problem require exponential time. For ordered trees we present an algorithm that requires [formula] time and space. We also consider the corresponding problem for unordered trees and give a proof of its NP-completeness." Trees (Graph theory) Mannila, Heikki Verfasser aut A] Tietojenkäsittelyopin Laitos <Helsinki>: [Series of publications 1991,4 (DE-604)BV000904448 1991,4 |
spellingShingle | Kilpeläinen, Pekka Mannila, Heikki Ordered and unordered tree inclusion Trees (Graph theory) |
title | Ordered and unordered tree inclusion |
title_auth | Ordered and unordered tree inclusion |
title_exact_search | Ordered and unordered tree inclusion |
title_full | Ordered and unordered tree inclusion Pekka Kilpeläinen ; Heikki Mannila |
title_fullStr | Ordered and unordered tree inclusion Pekka Kilpeläinen ; Heikki Mannila |
title_full_unstemmed | Ordered and unordered tree inclusion Pekka Kilpeläinen ; Heikki Mannila |
title_short | Ordered and unordered tree inclusion |
title_sort | ordered and unordered tree inclusion |
topic | Trees (Graph theory) |
topic_facet | Trees (Graph theory) |
volume_link | (DE-604)BV000904448 |
work_keys_str_mv | AT kilpelainenpekka orderedandunorderedtreeinclusion AT mannilaheikki orderedandunorderedtreeinclusion |