Learning decision trees from noisy examples:

Abstract: "We prove the learnability of decision trees of fixed rank in the presence of random classification noise. Ehrenfeucht and Haussler have presented an algorithm that learns decision trees of fixed rank probably approximately correctly from correct (noiseless) examples. We modify their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Elomaa, Tapio 1963- (VerfasserIn), Kivinen, Jyrki (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Helsinki 1991
Schriftenreihe:Tietojenkäsittelyopin Laitos <Helsinki>: [Series of publications / A] 1991,3
Schlagworte:
Zusammenfassung:Abstract: "We prove the learnability of decision trees of fixed rank in the presence of random classification noise. Ehrenfeucht and Haussler have presented an algorithm that learns decision trees of fixed rank probably approximately correctly from correct (noiseless) examples. We modify their algorithm slightly in order to achieve a noise-tolerant Occam algorithm for decision trees of fixed rank. Sakakibara has shown that the existence of a noise-tolerant Occam algorithm implies learnability in the presence of random classification noise. He has used this technique to prove the related result that decision lists are learnable from noisy examples."
Beschreibung:15 Bl.

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!