A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix:
A fast method for computing all the eigenvalues of a Hamiltonian matrix M is given. The method relies on orthogonal symplectic similarity transformations which preserve structure and have desirable numerical properties. The algorithm is about four times faster than the standard Q-R algorithm. The co...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Ithaca, New York
1982
|
Schriftenreihe: | Cornell University <Ithaca, NY> / Department of Computer Science: Technical report
494 |
Zusammenfassung: | A fast method for computing all the eigenvalues of a Hamiltonian matrix M is given. The method relies on orthogonal symplectic similarity transformations which preserve structure and have desirable numerical properties. The algorithm is about four times faster than the standard Q-R algorithm. The computed eigenvalues are shown to be the exact eigenvalues of a matrix M+E where |
Beschreibung: | 22 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010582007 | ||
003 | DE-604 | ||
005 | 19980914 | ||
007 | t | ||
008 | 960123s1982 |||| 00||| engod | ||
035 | |a (OCoLC)10690234 | ||
035 | |a (DE-599)BVBBV010582007 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
050 | 0 | |a QA188 | |
100 | 1 | |a Van Loan, Charles F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix |c C. Van Loan |
264 | 1 | |a Ithaca, New York |c 1982 | |
300 | |a 22 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Cornell University <Ithaca, NY> / Department of Computer Science: Technical report |v 494 | |
520 | 3 | |a A fast method for computing all the eigenvalues of a Hamiltonian matrix M is given. The method relies on orthogonal symplectic similarity transformations which preserve structure and have desirable numerical properties. The algorithm is about four times faster than the standard Q-R algorithm. The computed eigenvalues are shown to be the exact eigenvalues of a matrix M+E where | |
810 | 2 | |a Department of Computer Science: Technical report |t Cornell University <Ithaca, NY> |v 494 |w (DE-604)BV006185504 |9 494 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007054971 |
Datensatz im Suchindex
_version_ | 1804125051030601728 |
---|---|
any_adam_object | |
author | Van Loan, Charles F. |
author_facet | Van Loan, Charles F. |
author_role | aut |
author_sort | Van Loan, Charles F. |
author_variant | l c f v lcf lcfv |
building | Verbundindex |
bvnumber | BV010582007 |
callnumber-first | Q - Science |
callnumber-label | QA188 |
callnumber-raw | QA188 |
callnumber-search | QA188 |
callnumber-sort | QA 3188 |
callnumber-subject | QA - Mathematics |
ctrlnum | (OCoLC)10690234 (DE-599)BVBBV010582007 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01338nam a2200289 cb4500</leader><controlfield tag="001">BV010582007</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19980914 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960123s1982 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)10690234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010582007</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA188</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Van Loan, Charles F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix</subfield><subfield code="c">C. Van Loan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Ithaca, New York</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">22 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cornell University <Ithaca, NY> / Department of Computer Science: Technical report</subfield><subfield code="v">494</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">A fast method for computing all the eigenvalues of a Hamiltonian matrix M is given. The method relies on orthogonal symplectic similarity transformations which preserve structure and have desirable numerical properties. The algorithm is about four times faster than the standard Q-R algorithm. The computed eigenvalues are shown to be the exact eigenvalues of a matrix M+E where</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Technical report</subfield><subfield code="t">Cornell University <Ithaca, NY></subfield><subfield code="v">494</subfield><subfield code="w">(DE-604)BV006185504</subfield><subfield code="9">494</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007054971</subfield></datafield></record></collection> |
id | DE-604.BV010582007 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:55:24Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007054971 |
oclc_num | 10690234 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 22 S. |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
record_format | marc |
series2 | Cornell University <Ithaca, NY> / Department of Computer Science: Technical report |
spelling | Van Loan, Charles F. Verfasser aut A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix C. Van Loan Ithaca, New York 1982 22 S. txt rdacontent n rdamedia nc rdacarrier Cornell University <Ithaca, NY> / Department of Computer Science: Technical report 494 A fast method for computing all the eigenvalues of a Hamiltonian matrix M is given. The method relies on orthogonal symplectic similarity transformations which preserve structure and have desirable numerical properties. The algorithm is about four times faster than the standard Q-R algorithm. The computed eigenvalues are shown to be the exact eigenvalues of a matrix M+E where Department of Computer Science: Technical report Cornell University <Ithaca, NY> 494 (DE-604)BV006185504 494 |
spellingShingle | Van Loan, Charles F. A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix |
title | A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix |
title_auth | A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix |
title_exact_search | A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix |
title_full | A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix C. Van Loan |
title_fullStr | A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix C. Van Loan |
title_full_unstemmed | A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix C. Van Loan |
title_short | A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix |
title_sort | a symplectic method for approximating all the eigenvalues of a hamiltonian matrix |
volume_link | (DE-604)BV006185504 |
work_keys_str_mv | AT vanloancharlesf asymplecticmethodforapproximatingalltheeigenvaluesofahamiltonianmatrix |