Schaum's outline of theory and problems of finite mathematics:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
McGraw-Hill
1995
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Schaum's outline series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VII, 483 S. Ill., graph. Darst. |
ISBN: | 0070380023 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV010560761 | ||
003 | DE-604 | ||
005 | 20131016 | ||
007 | t | ||
008 | 960115s1995 ad|| |||| 00||| eng d | ||
020 | |a 0070380023 |9 0-07-038002-3 | ||
035 | |a (OCoLC)30398417 | ||
035 | |a (DE-599)BVBBV010560761 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-1051 |a DE-522 |a DE-634 |a DE-188 | ||
050 | 0 | |a QA43 | |
082 | 0 | |a 510/.76 |2 20 | |
084 | |a MAT 055f |2 stub | ||
084 | |a MAT 600f |2 stub | ||
084 | |a MAT 910f |2 stub | ||
084 | |a MAT 021f |2 stub | ||
100 | 1 | |a Lipschutz, Seymour |e Verfasser |0 (DE-588)140841733 |4 aut | |
245 | 1 | 0 | |a Schaum's outline of theory and problems of finite mathematics |c Seymour Lipschutz ; John J. Schiller |
246 | 1 | 3 | |a Theory and problems of finite mathematics |
246 | 1 | 3 | |a Finite mathematics |
250 | |a 2. ed. | ||
264 | 1 | |a New York [u.a.] |b McGraw-Hill |c 1995 | |
300 | |a VII, 483 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Schaum's outline series | |
650 | 7 | |a Analyse mathématique |2 ram | |
650 | 7 | |a Ensembles, Théorie des |2 ram | |
650 | 7 | |a Markov, Processus de |2 ram | |
650 | 7 | |a Programmation linéaire - Manuels d'enseignement supérieur |2 ram | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics |v Problems, exercises, etc | |
650 | 0 | 7 | |a Graph |0 (DE-588)4021842-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Endliche Mathematik |0 (DE-588)4152155-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastik |0 (DE-588)4121729-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143389-0 |a Aufgabensammlung |2 gnd-content | |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Stochastik |0 (DE-588)4121729-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Graph |0 (DE-588)4021842-9 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Endliche Mathematik |0 (DE-588)4152155-9 |D s |
689 | 3 | |5 DE-188 | |
689 | 4 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 4 | |8 1\p |5 DE-604 | |
700 | 1 | |a Schiller, John J. |e Verfasser |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007040892&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007040892 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804125030902136832 |
---|---|
adam_text | CONTENTS
CHAPTER
1
LINEAR
EQUATIONS
AND
THEIR
GRAPHS..........
1
1.1
INTRODUCTION;
REAL
LINE
R.
1.2
CARTESIAN
PLANE
R
2
.
1.3
LINEAR
EQUA
TIONS
IN
ONE
UNKNOWN.
1.4
LINEAR
EQUATIONS
IN
TWO
UNKNOWNS
AND
THEIR
GRAPHS.
1.5
SLOPE
OF
A
LINE.
1.6
LINES
AND
THEIR
EQUATIONS;
POINT-SLOPE
FORMULA.
1.7
GENERAL
EQUATIONS
AND
CURVES;
FUNCTIONS.
CHAPTER
2
SYSTEMS
OF
LINEAR
EQUATIONS..............
29
2.1
INTRODUCTION.
2.2
SYSTEMS
OF
TWO
LINEAR
EQUATIONS
IN
TWO
UNKNOWNS.
2.3
SOLVING
SYSTEMS
OF
TWO
EQUATIONS
IN
TWO
UNKNOWNS.
2.4
APPLICATION:
LINE
OF
BEST
FIT
(LEAST
SQUARES).
2.5
SYSTEMS
OF
THREE
EQUATIONS
IN
THREE
UNKNOWNS.
2.6
SOLVING
SYSTEMS
OF
THREE
EQUATIONS
IN
THREE
UNKNOWNS.
2.7
GENERAL
SYSTEMS
OF
LINEAR
EQUATIONS
AND
NONUNIQUE
SOLUTIONS.
2.8
MATRIX
FORMAT
SOLUTION
OF
SYSTEMS
OF
LINEAR
EQUATIONS.
CHAPTER
3
VECTORS
AND
MATRICES..................69
3.1
INTRODUCTION.
3.2
VECTORS.
3.3
MATRICES.
3.4
MATRIX
ADDITION
AND
SCALAR
MULTIPLICATION.
3.5
SUMMATION
SYMBOL.
3.6
MATRIX
MULTIPLICATION.
3.7
TRANSPOSE
OF
A
MATRIX.
3.8
SQUARE
MATRICES.
3.9
INVERTIBLE
MATRICES
AND
INVERSES.
CHAPTER
4
LINEAR
INEQUALITIES....................
93
4.1
LINEAR
INEQUALITIES
ON
THE
REAL
LINE.
4.2
LINEAR
INEQUALITIES
IN
THE
PLANE.
4.3
SYSTEMS
OF
LINEAR
INEQUALITIES
AND
COMER
POINTS.
4.4
APPLICATIONS
OF
SYSTEMS
OF
LINEAR
INEQUALITIES.
CHAPTER
5
LINEAR
PROGRAMMING
I:
A
GEOMETRIC
APPROACH
.
.
.
.
113
5.1
INTRODUCTION.
5.2
A
MAXIMUM
PROBLEM.
5.3
A
MINIMU
M
PROBLEM.
5.4
SUMMARY.
CHAPTER
6
LINEAR
PROGRAMMING
II:
THE
SIMPLEX
METHOD.....127
6.1
INTRODUCTION
TO
THE
SIMPLEX
METHOD.
6.2
LINEAR
PROGRAMMING
PROBLEMS
IN
STANDARD
FORM.
6.3
LINEAR
PROGRAMMING
PROBLEMS
IN
NONSTANDARD
FORM:
DUALITY.
CHAPTER
7
EULERIAN
GRAPHS.....................148
7.1
GRAPHS.
7.2
EULER
CIRCUITS.
7.3
THE
LETTER
CARRIER
PROBLEM.
VI
CONTENTS
CHAPTER
8
HAMILTONIAN
GRAPHS...................164
8.1
HAMILTONIAN
CIRCUITS.
8.2
COMPLETE
GRAPHS.
8.3
TRAVELING
SALES
MAN
PROBLEM.
CHAPTER
9
DIRECTED
GRAPHS
AND
MINIMAL
SPANNING
TREES
....
176
9.1
DIRECTED
GRAPHS.
9.2
TREES.
9.3
SPANNING
TREES.
CHAPTER
10
SET
THEORY........................188
10.1
SETS
AND
ELEMENTS.
10.2
UNIVERSAL
SET
AND
EMPTY
SET.
10.3
SUBSETS.
10.4
VENN
DIAGRAMS.
10.5
SET
OPERATIONS.
10.6
ALGEBRA
OF
SETS
AND
DUALITY.
10.7
FINITE
SETS
AND
COUNTING
PRINCIPLE.
10.8
CLASSES
OF
SETS
AND
POWER
SETS.
10.9
MATHEMATICAL
INDUCTION.
CHAPTER
11
COMBINATORIAL
ANALYSIS
.................208
11.1
FUNDAMENTAL
PRINCIPLE
OF
COUNTING.
11.2
FACTORIAL
NOTATION.
11.3
BINOMIAL
COEFFICIENTS.
11.4
PERMUTATIONS.
11.5
PERMUTATIONS
AND
REPETITIONS.
11.6
COMBINATIONS.
11.7
TREE
DIAGRAMS.
CHAPTER
12
BASIC
PROBABILITY
.....................227
12.1
INTRODUCTION.
12.2
SAMPLE
SPACE
AND
EVENTS.
12.3
FINITE
PROBABIL
ITY
SPACES.
12.4
EQUIPROBABLE
SPACES.
12.5
THEOREMS
ON
FINITE
PROB
ABILITY
SPACES.
12.6
CLASSICAL
BIRTHDAY
PROBLEM.
12.7
MATHEMATICAL
EXPECTATION.
CHAPTER
13
CONDITIONAL
PROBABILITY
AND
INDEPENDENT
EVENTS
.
.
246
13.1
CONDITIONAL
PROBABILITY.
13.2
FINITE
STOCHASTIC
PROCESSES
AND
TREE
DIAGRAMS.
13.3
MARKOV
PROCESSES.
13.4
TOTAL
PROBABILITY
AND
BAYES*
FORMULA.
13.5
INDEPENDENT
EVENTS.
13.6
INDEPENDENT
REPEATED
TRIALS.
CHAPTER
14
RANDOM
VARIABLES
....................277
14.1
RANDOM
VARIABLES.
14.2
PROBABILITY
DISTRIBUTION
OF
A
RANDOM
VARI
ABLE.
14.3
EXPECTED
VALUE
OF
A
RANDOM
VARIABLE.
14.4
VARIANCE
AND
STANDARD
DEVIATION
OF
A
RANDOM
VARIABLE.
14.5
JOINT
DISTRIBUTIONS
AND
INDEPENDENT
RANDOM
VARIABLES.
14.6
SUM
OF
RANDOM
VARIABLES.
14.7
CHEBYSHEV*S
INEQUALITY
AND
THE
LAW
OF
LARGE
NUMBERS.
CHAPTER
15
BINOMIAL
AND
NORMAL
DISTRIBUTIONS
..........309
15.1
BINOMIAL
DISTRIBUTION.
15.2
NORMAL
DISTRIBUTION.
15.3
NORMAL
APPROXIMATION
OF
THE
BINOMIAL
DISTRIBUTION.
CHAPTER
16
DESCRIPTIVE
STATISTICS
..................331
16.1
INTRODUCTION:
THE
NATURE
OF
STATISTICS.
16.2
GATHERING
DATA:
RANDOM
SAMPLES.
16.3
DISPLAYING
DATA:
FREQUENCY
HISTOGRAMS.
16.4
MEASURES
CONTENTS
VIL
OF
CENTRAL
TENDENCY:
SAMPLE
MEAN
AND
MEDIAN.
16.5
MEASURES
OF
DIS
PERSION:
SAMPLE
VARIANCE
AND
STANDARD
DEVIATION.
16.6
MEASURES
OF
POSITION:
QUARTILES
AND
PERCENTILES.
16.7
BIVARIATE
DATA,
SCATTERPLOTS,
AND
LINEAR
REGRESSION.
CHAPTER
17
INFERENTIAL
STATISTICS..................
372
17.1
SAMPLING
DISTRIBUTIONS.
17.2
THE
CENTRAL
LIMIT
THEOREM.
17.3
CONFIDENCE
INTERVALS
FOR
POPULATION
MEANS.
17.4
CHI-SQUARE
TEST
FOR
GOODNESS
OF
FIT.
CHAPTER
18
THEORY
OF
GAMES.....................397
18.1
INTRODUCTION
TO
MATRIX
GAMES.
18.2
STRATEGIES.
18.3
OPTIMUM
STRA
TEGIES
AND
THE
VALUE
OF
A
GAME.
18.4
STRICTLY
DETERMINED
GAMES.
18.5
2X2
MATRIX
GAMES.
18.6
RECESSIVE
ROWS
AND
COLUMNS.
18.7
SOLUTION
OF
A
MATRIX
GAME
BY
THE
SIMPLEX
METHOD.
18.8
2
X
M
AND
M
X
2
MATRIX
GAMES.
18.9
SUMMARY.
CHAPTER
19
INTEREST
ON
INVESTMENTS
AND
LOANS..........415
19.1
SIMPLE
INTEREST.
19.2
SIMPLE
DISCOUNT.
19.3
COMPOUND
INTEREST.
19.4
CONTINUOUS
INTEREST.
19.5
EFFECTIVE
RATE
OF
INTEREST.
CHAPTER
20
ANNUITIES..........................431
20.1
INTRODUCTION.
20.2
SINKING
FUNDS
AND
FUTURE
VALUE.
20.3
AMORTIZA
TION
AND
PRESENT
VALUE.
CHAPTER
21
PROPOSITIONAL
CALCULUS
.................439
21.1
STATEMENTS
AND
COMPOUND
STATEMENTS.
21.2
CONJUNCTION,
P
A
Q.
21.3
DISJUNCTION,
PVQ.
21.4
NEGATION,
~P.
21.5
PROPOSITIONS
AND
TRUTH
TABLES.
21.6
TAUTOLOGIES
AND
CONTRADICTIONS.
21.7
LOGICAL
EQUIVALENCE.
21.8
ALGEBRA
OF
PROPOSITIONS.
21.9
CONDITIONAL
AND
BICON
DITIONAL
STATEMENTS.
21.10
ARGUMENTS.
21.11
LOGICAL
IMPLICATION.
APPENDIX
A
TABLES..........................
460
TABLE
A-L
(1
+
I)
N
.
TABLE
A-2
(1
+I)~
N
.
TABLE
A-3
EXPONENTIAL
FUNCTIONS.
TABLE
A-4-
^-
+
^
.TABLE
A-5
1
.
TABLE
A-6A
W
=
1
*
^
+
^
.
1
SN)I
I
TABLE
A-7
*.
AMI
APPENDIX
B
THE
GRAPHING
CALCULATOR...............473
INDEX
.
.
.
................................
477
|
any_adam_object | 1 |
author | Lipschutz, Seymour Schiller, John J. |
author_GND | (DE-588)140841733 |
author_facet | Lipschutz, Seymour Schiller, John J. |
author_role | aut aut |
author_sort | Lipschutz, Seymour |
author_variant | s l sl j j s jj jjs |
building | Verbundindex |
bvnumber | BV010560761 |
callnumber-first | Q - Science |
callnumber-label | QA43 |
callnumber-raw | QA43 |
callnumber-search | QA43 |
callnumber-sort | QA 243 |
callnumber-subject | QA - Mathematics |
classification_tum | MAT 055f MAT 600f MAT 910f MAT 021f |
ctrlnum | (OCoLC)30398417 (DE-599)BVBBV010560761 |
dewey-full | 510/.76 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510/.76 |
dewey-search | 510/.76 |
dewey-sort | 3510 276 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02647nam a2200697 c 4500</leader><controlfield tag="001">BV010560761</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131016 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960115s1995 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0070380023</subfield><subfield code="9">0-07-038002-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)30398417</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010560761</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1051</subfield><subfield code="a">DE-522</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA43</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510/.76</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 055f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 600f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 910f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 021f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lipschutz, Seymour</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140841733</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Schaum's outline of theory and problems of finite mathematics</subfield><subfield code="c">Seymour Lipschutz ; John J. Schiller</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Theory and problems of finite mathematics</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Finite mathematics</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">McGraw-Hill</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VII, 483 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Schaum's outline series</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analyse mathématique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ensembles, Théorie des</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Markov, Processus de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Programmation linéaire - Manuels d'enseignement supérieur</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield><subfield code="v">Problems, exercises, etc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graph</subfield><subfield code="0">(DE-588)4021842-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Mathematik</subfield><subfield code="0">(DE-588)4152155-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastik</subfield><subfield code="0">(DE-588)4121729-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastik</subfield><subfield code="0">(DE-588)4121729-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Graph</subfield><subfield code="0">(DE-588)4021842-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Endliche Mathematik</subfield><subfield code="0">(DE-588)4152155-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schiller, John J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007040892&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007040892</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4143389-0 Aufgabensammlung gnd-content (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Aufgabensammlung Einführung |
id | DE-604.BV010560761 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:55:05Z |
institution | BVB |
isbn | 0070380023 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007040892 |
oclc_num | 30398417 |
open_access_boolean | |
owner | DE-1051 DE-522 DE-634 DE-188 |
owner_facet | DE-1051 DE-522 DE-634 DE-188 |
physical | VII, 483 S. Ill., graph. Darst. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | McGraw-Hill |
record_format | marc |
series2 | Schaum's outline series |
spelling | Lipschutz, Seymour Verfasser (DE-588)140841733 aut Schaum's outline of theory and problems of finite mathematics Seymour Lipschutz ; John J. Schiller Theory and problems of finite mathematics Finite mathematics 2. ed. New York [u.a.] McGraw-Hill 1995 VII, 483 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Schaum's outline series Analyse mathématique ram Ensembles, Théorie des ram Markov, Processus de ram Programmation linéaire - Manuels d'enseignement supérieur ram Mathematik Mathematics Mathematics Problems, exercises, etc Graph (DE-588)4021842-9 gnd rswk-swf Optimierung (DE-588)4043664-0 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Endliche Mathematik (DE-588)4152155-9 gnd rswk-swf Stochastik (DE-588)4121729-9 gnd rswk-swf (DE-588)4143389-0 Aufgabensammlung gnd-content (DE-588)4151278-9 Einführung gnd-content Stochastik (DE-588)4121729-9 s DE-604 Optimierung (DE-588)4043664-0 s Graph (DE-588)4021842-9 s Endliche Mathematik (DE-588)4152155-9 s DE-188 Mathematik (DE-588)4037944-9 s 1\p DE-604 Schiller, John J. Verfasser aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007040892&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lipschutz, Seymour Schiller, John J. Schaum's outline of theory and problems of finite mathematics Analyse mathématique ram Ensembles, Théorie des ram Markov, Processus de ram Programmation linéaire - Manuels d'enseignement supérieur ram Mathematik Mathematics Mathematics Problems, exercises, etc Graph (DE-588)4021842-9 gnd Optimierung (DE-588)4043664-0 gnd Mathematik (DE-588)4037944-9 gnd Endliche Mathematik (DE-588)4152155-9 gnd Stochastik (DE-588)4121729-9 gnd |
subject_GND | (DE-588)4021842-9 (DE-588)4043664-0 (DE-588)4037944-9 (DE-588)4152155-9 (DE-588)4121729-9 (DE-588)4143389-0 (DE-588)4151278-9 |
title | Schaum's outline of theory and problems of finite mathematics |
title_alt | Theory and problems of finite mathematics Finite mathematics |
title_auth | Schaum's outline of theory and problems of finite mathematics |
title_exact_search | Schaum's outline of theory and problems of finite mathematics |
title_full | Schaum's outline of theory and problems of finite mathematics Seymour Lipschutz ; John J. Schiller |
title_fullStr | Schaum's outline of theory and problems of finite mathematics Seymour Lipschutz ; John J. Schiller |
title_full_unstemmed | Schaum's outline of theory and problems of finite mathematics Seymour Lipschutz ; John J. Schiller |
title_short | Schaum's outline of theory and problems of finite mathematics |
title_sort | schaum s outline of theory and problems of finite mathematics |
topic | Analyse mathématique ram Ensembles, Théorie des ram Markov, Processus de ram Programmation linéaire - Manuels d'enseignement supérieur ram Mathematik Mathematics Mathematics Problems, exercises, etc Graph (DE-588)4021842-9 gnd Optimierung (DE-588)4043664-0 gnd Mathematik (DE-588)4037944-9 gnd Endliche Mathematik (DE-588)4152155-9 gnd Stochastik (DE-588)4121729-9 gnd |
topic_facet | Analyse mathématique Ensembles, Théorie des Markov, Processus de Programmation linéaire - Manuels d'enseignement supérieur Mathematik Mathematics Mathematics Problems, exercises, etc Graph Optimierung Endliche Mathematik Stochastik Aufgabensammlung Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007040892&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lipschutzseymour schaumsoutlineoftheoryandproblemsoffinitemathematics AT schillerjohnj schaumsoutlineoftheoryandproblemsoffinitemathematics AT lipschutzseymour theoryandproblemsoffinitemathematics AT schillerjohnj theoryandproblemsoffinitemathematics AT lipschutzseymour finitemathematics AT schillerjohnj finitemathematics |