New theory of real numbers especially regarding "infinite" and "zero":
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Hamburg
Kovač
1995
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 150 S. Ill. |
ISBN: | 3860643258 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV010554488 | ||
003 | DE-604 | ||
005 | 19960620 | ||
007 | t | ||
008 | 960102s1995 gw a||| |||| 00||| ger d | ||
016 | 7 | |a 946358567 |2 DE-101 | |
020 | |a 3860643258 |c Gb. : DM 88.00, sfr 73.04, S 616.00 |9 3-86064-325-8 | ||
035 | |a (OCoLC)36689046 | ||
035 | |a (DE-599)BVBBV010554488 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-739 | ||
050 | 0 | |a QA241 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
100 | 1 | |a Ming, Nai-Ta |e Verfasser |4 aut | |
245 | 1 | 0 | |a New theory of real numbers especially regarding "infinite" and "zero" |c Nai-Ta Ming |
264 | 1 | |a Hamburg |b Kovač |c 1995 | |
300 | |a XIII, 150 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Infinite | |
650 | 4 | |a Numbers, Real | |
650 | 4 | |a Zero (The number) | |
650 | 0 | 7 | |a Reelle Zahl |0 (DE-588)4202628-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unendlichkeit |0 (DE-588)4136067-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Null |0 (DE-588)4368215-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reelle Zahl |0 (DE-588)4202628-3 |D s |
689 | 0 | 1 | |a Unendlichkeit |0 (DE-588)4136067-9 |D s |
689 | 0 | 2 | |a Null |0 (DE-588)4368215-7 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007036212&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007036212 |
Datensatz im Suchindex
_version_ | 1804125023879823360 |
---|---|
adam_text | NAI-TA MING NEW THEORY OF REAL NUMBERS ESPECIALLY REGARDING INFINITE
AND ZERO VERLAG DR. KOVAC XI CONTENTS INTRODUCTION 1 NOTES FOR
INTRODUCTION 6 LA. NEW IDEA OF REAL NUMBER 9 1. NEW FOUNDATION OF REAL
NUMBER 9 1.1 DEFINITION OF INFINITE , FINITE (SEPARATED AGAIN INTO
NORMAL AND ZERO ) REAL NUMBER 9 NOTES FOR 1.1 13 1.2 EXTENDING ZERO
FINITE AND INFINITE ORDINAL REAL NUMBER OF HIGHER ORDER IN CVSYSTEM
17 NOTES FOR 1.2 22 2. CONSTRUCTION OF A SET OF NORMAL FINITE ORDINAL
REAL NUMBERS OF ^-SYSTEM 25 2.1 GENERAL PRINCIPLE 26 NOTES FOR 2.1 28
2.2 REAL NUMBER ON ULTRALFILTER (D) BASIS 31 NOTES FOR 2.2 38 2.3 REAL
NUMBER ON POWER SET (P) BASIS 41 NOTES FOR 2.3 49 3. PRACTICAL
DETERMINATION OF A SET OF ORDINAL REAL NUMBERS OF -SYSTEM WITH EXAMPLES
53 3.1 DETERMINATION OF DJ, THE SUBSET OF D 53 1) SCHEMATIC PROCESS 53
2) MATHEMATICAL RULES FOR CONSTRUCTION OF REAL NUMBERS IN (5-SYSTEM 55
3) SUMMARIZING THESE MATHEMATICAL RULES 62 4) APPLYING SCHEMATIC
PROCESSS TO FIND DJ WITH EXAMPLE 64 XII NOTES FOR 3.1 72 3.2 EXAMPLES
FOR SET OF NORMAL POSITIVE FINITE ORDINARY REAL NUMBERS OF ^-SYSTEM 75
1) EXAMPLE FOR 8= 1 TO FIND RJG E FI(D)$ 75 2) EXAMPLE FOR 8 = 2 TO FIND
R IS & JU(D)S 77 3) EXAMPLE FOR 8 = 3 TO FIND RJG. E FI(D)$ G3 3.3
EXAMPLES FOR THE SET OF INFINITE POSITIVE AND ZERO POSITIVE FINITE
ORDINAL REAL NUMBERS OF ORDER 89 3.3.1 {R M ^)S E &K D )S IOT S= !. 2
A* 13 89 1) EXAMPLE FOR 8=1 TO FIND {R M ^§E MN{D)S 89 2) EXAMPLE FOR
8= 2 TO FIND {R M -)§& MFI(D)G 89 3) EXAMPLE FOR 8=3TOFIND(R M J)FI E
MFI{D)G 90 3.3.2 (R^.) S 6!U(D)FOR 5=L,2AND3 90 1) EXAMPLE FOR 8 = 1
TO FIND (R^E 0/U(D)S 90 2) EXAMPLE FOR 8 = 2 TO FIND (R^) JE 6HD) 91 3)
EXAMPLE FOR 8= 3 TO FIND (R^)^E 6!U( ) 3.3.3 SOME IMPORTANT
ARITHMETICAL OPERATIONS +, -, X AND + WHICH ARE DIFFERENT FROM
TODAY S MATHEMATICS 92 3.4 THE RELATIONS BETWEEN EXAMPLES FOR DIFFERENT
^-SYSTEM AND THE GENERALIZATION 97 APPENDIX 103 I. ARGUMENTS ABOUT REAL
NUMBERS IN CONTEMPORARY MATHEMATICS 103 II. ARGUMENTS ABOUT THE TERM
INFINITE I.E. OO 104 III. THE TERM ZERO I.E. 0 WHICH IS EITHER
WITHOUT THE SAME SENSE AS THE USUAL REAL NUMBERS OR UNDECIDABLE 108 NEW
NOTATION AND TERMINOLOGY (NNT) AS WELL AS ABBREVIATION 111 BIBLIOGRAPHY
121 AUTHOR AND NAME INDEX 133 SUBJECT IDEX 137 XIII CONTENTS FOR I.B.
149 CONTENTS FOR PART II. 150 FIG. 1 21 FIG. 2A 152 FIG. 2B 102 TABLE 1
66 TABLE 2 68 TABLE 3 69 TABLE 4 71 TABLE 5 151
|
any_adam_object | 1 |
author | Ming, Nai-Ta |
author_facet | Ming, Nai-Ta |
author_role | aut |
author_sort | Ming, Nai-Ta |
author_variant | n t m ntm |
building | Verbundindex |
bvnumber | BV010554488 |
callnumber-first | Q - Science |
callnumber-label | QA241 |
callnumber-raw | QA241 |
callnumber-search | QA241 |
callnumber-sort | QA 3241 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 180 |
ctrlnum | (OCoLC)36689046 (DE-599)BVBBV010554488 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01562nam a2200433 c 4500</leader><controlfield tag="001">BV010554488</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19960620 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960102s1995 gw a||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">946358567</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3860643258</subfield><subfield code="c">Gb. : DM 88.00, sfr 73.04, S 616.00</subfield><subfield code="9">3-86064-325-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)36689046</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010554488</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA241</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ming, Nai-Ta</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New theory of real numbers especially regarding "infinite" and "zero"</subfield><subfield code="c">Nai-Ta Ming</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hamburg</subfield><subfield code="b">Kovač</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 150 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infinite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numbers, Real</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zero (The number)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reelle Zahl</subfield><subfield code="0">(DE-588)4202628-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unendlichkeit</subfield><subfield code="0">(DE-588)4136067-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Null</subfield><subfield code="0">(DE-588)4368215-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reelle Zahl</subfield><subfield code="0">(DE-588)4202628-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Unendlichkeit</subfield><subfield code="0">(DE-588)4136067-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Null</subfield><subfield code="0">(DE-588)4368215-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007036212&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007036212</subfield></datafield></record></collection> |
id | DE-604.BV010554488 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:54:58Z |
institution | BVB |
isbn | 3860643258 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007036212 |
oclc_num | 36689046 |
open_access_boolean | |
owner | DE-739 |
owner_facet | DE-739 |
physical | XIII, 150 S. Ill. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Kovač |
record_format | marc |
spelling | Ming, Nai-Ta Verfasser aut New theory of real numbers especially regarding "infinite" and "zero" Nai-Ta Ming Hamburg Kovač 1995 XIII, 150 S. Ill. txt rdacontent n rdamedia nc rdacarrier Infinite Numbers, Real Zero (The number) Reelle Zahl (DE-588)4202628-3 gnd rswk-swf Unendlichkeit (DE-588)4136067-9 gnd rswk-swf Null (DE-588)4368215-7 gnd rswk-swf Reelle Zahl (DE-588)4202628-3 s Unendlichkeit (DE-588)4136067-9 s Null (DE-588)4368215-7 s DE-604 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007036212&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ming, Nai-Ta New theory of real numbers especially regarding "infinite" and "zero" Infinite Numbers, Real Zero (The number) Reelle Zahl (DE-588)4202628-3 gnd Unendlichkeit (DE-588)4136067-9 gnd Null (DE-588)4368215-7 gnd |
subject_GND | (DE-588)4202628-3 (DE-588)4136067-9 (DE-588)4368215-7 |
title | New theory of real numbers especially regarding "infinite" and "zero" |
title_auth | New theory of real numbers especially regarding "infinite" and "zero" |
title_exact_search | New theory of real numbers especially regarding "infinite" and "zero" |
title_full | New theory of real numbers especially regarding "infinite" and "zero" Nai-Ta Ming |
title_fullStr | New theory of real numbers especially regarding "infinite" and "zero" Nai-Ta Ming |
title_full_unstemmed | New theory of real numbers especially regarding "infinite" and "zero" Nai-Ta Ming |
title_short | New theory of real numbers especially regarding "infinite" and "zero" |
title_sort | new theory of real numbers especially regarding infinite and zero |
topic | Infinite Numbers, Real Zero (The number) Reelle Zahl (DE-588)4202628-3 gnd Unendlichkeit (DE-588)4136067-9 gnd Null (DE-588)4368215-7 gnd |
topic_facet | Infinite Numbers, Real Zero (The number) Reelle Zahl Unendlichkeit Null |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007036212&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT mingnaita newtheoryofrealnumbersespeciallyregardinginfiniteandzero |