On finite groups and homotopy theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, RI
1995
|
Schriftenreihe: | American Mathematical Society: Memoirs of the American Mathematical Society
567 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Volume 118, Number 567 (end of volume) |
Beschreibung: | XIII, 100 S. |
ISBN: | 0821804014 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010545373 | ||
003 | DE-604 | ||
005 | 20230615 | ||
007 | t | ||
008 | 960103s1995 |||| 00||| eng d | ||
020 | |a 0821804014 |9 0-8218-0401-4 | ||
035 | |a (OCoLC)32856441 | ||
035 | |a (DE-599)BVBBV010545373 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-824 |a DE-384 |a DE-739 |a DE-12 |a DE-355 |a DE-29T |a DE-91G |a DE-83 |a DE-188 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 510 |2 20 | |
082 | 0 | |a 514/.24 |2 20 | |
084 | |a SI 130 |0 (DE-625)143082: |2 rvk | ||
100 | 1 | |a Levi, Ran |d 1961- |e Verfasser |0 (DE-588)172931134 |4 aut | |
245 | 1 | 0 | |a On finite groups and homotopy theory |c Ran Levi |
264 | 1 | |a Providence, RI |c 1995 | |
300 | |a XIII, 100 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a American Mathematical Society: Memoirs of the American Mathematical Society |v 567 | |
500 | |a Volume 118, Number 567 (end of volume) | ||
650 | 7 | |a Eindige groepen |2 gtt | |
650 | 7 | |a Homotopie |2 gtt | |
650 | 4 | |a Finite groups | |
650 | 4 | |a Homotopy theory | |
650 | 4 | |a Loop spaces | |
650 | 0 | 7 | |a Perfekte Gruppe |0 (DE-588)4247757-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homotopie |0 (DE-588)4025803-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homotopietheorie |0 (DE-588)4128142-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Endliche Gruppe |0 (DE-588)4014651-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schleifenraum |0 (DE-588)4179711-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Endliche Gruppe |0 (DE-588)4014651-0 |D s |
689 | 0 | 1 | |a Homotopie |0 (DE-588)4025803-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Endliche Gruppe |0 (DE-588)4014651-0 |D s |
689 | 1 | 1 | |a Perfekte Gruppe |0 (DE-588)4247757-8 |D s |
689 | 1 | 2 | |a Homotopietheorie |0 (DE-588)4128142-1 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Endliche Gruppe |0 (DE-588)4014651-0 |D s |
689 | 2 | 1 | |a Perfekte Gruppe |0 (DE-588)4247757-8 |D s |
689 | 2 | 2 | |a Schleifenraum |0 (DE-588)4179711-5 |D s |
689 | 2 | |5 DE-604 | |
830 | 0 | |a American Mathematical Society: Memoirs of the American Mathematical Society |v 567 |w (DE-604)BV008000141 |9 567 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007028509&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007028509 |
Datensatz im Suchindex
_version_ | 1804125013052227584 |
---|---|
adam_text | Contents
Abstract vii
Preface ix
Acknowledgements xiii
Part 1
The Homology and Homotopy Theory Associated with ilBn^
Chapter 1. Introduction 3
1.1. Statement of Results 3
1.2. Organization of Part 1 6
Chapter 2. Preliminaries 7
2.1. Some Facts on the It Completion Functor 7
2.2. Mod R Acyclic Spaces and Proposition 1.1.2 7
2.3. The Quillen Plus Construction 8
Chapter 3. A model for SJIX* 9
3.1. An Algebraic Plus Construction 9
3.2. Proof of Theorems 1.1.2 and 1.1.3 12
Chapter 4. Homology Exponents for QBn^ 13
4.1. Extended Maps and Homotopies 13
4.2. Proof of Theorem 1.1.1 15
Chapter 5. Examples for Homology Exponents 21
5.1. Groups with a Dihedral Sylow 2 Subgroup 21
5.2. Groups with a Semidihedral Sylow 2 Subgroup 23
Chapter 6. The Homotopy Groups of Bn* 25
6.1. Some Basic Facts 25
6.2. Proof of Theorem 1.1.4 27
6.3. Examples for Homotopy Exponents 28
vi CONTENTS
Chapter 7. Stable Homotopy Exponents for OBtt^ 31
7.1. Preliminaries on the Transfer 31
7.2. Proof of Theorem 1.1.5 33
7.3. The Non Existence of Exponents in n*B7r£ 35
Part 2
Finite Groups and Resolutions by Fibrations
Chapter 1. Introduction 43
1.1. Statement of Results 43
1.2. Organization of Part 2 46
Chapter 2. Preliminaries 47
2.1. Universal Central Extensions 47
2.2. Uniqueness of Homotopy Type, Special Case 47
2.3. Homotopy decomposition of Classifying Spaces 49
2.4. The Neisendorfer Fibre Square Lemma 49
Chapter 3. Resolutions by Fibrations 51
3.1. Definition and Basic Examples 51
3.2. A Fibration Lemma 53
3.3. The mod p Cohen Conjecture 54
Chapter 4. Sporadic Examples 57
4.1. Groups with a Dihedral Sylow 2 Subgroup 57
4.2. Groups with a Semidihedral Sylow 2 Subgroup 67
Chapter 5. Groups of Lie Type and S Resolutions 77
5.1. Preliminary Theorems 77
5.2. A Spherical Fibre Square 78
5.3. Proof of Theorem 1.1.3 81
5.4. The Groups SLn(¥q) and Sp2n(Fq) 83
5.5. Proof of Theorem 1.1.6 and Examples 85
Chapter 6. Clark Ewing Spaces and Groups 87
6.1. Construction 87
6.2. Spherical Resolutions of Loop Spaces on Clark Ewing Spaces 89
6.3. Resolutions by Cohomological Considerations 89
6.4. Some Preliminaries from Representation Theory 91
6.5. Clark Ewing Groups 92
Chapter 7. Discussion 95
References 97
|
any_adam_object | 1 |
author | Levi, Ran 1961- |
author_GND | (DE-588)172931134 |
author_facet | Levi, Ran 1961- |
author_role | aut |
author_sort | Levi, Ran 1961- |
author_variant | r l rl |
building | Verbundindex |
bvnumber | BV010545373 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 130 |
ctrlnum | (OCoLC)32856441 (DE-599)BVBBV010545373 |
dewey-full | 510 514/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics 514 - Topology |
dewey-raw | 510 514/.24 |
dewey-search | 510 514/.24 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02372nam a2200601 cb4500</leader><controlfield tag="001">BV010545373</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230615 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960103s1995 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821804014</subfield><subfield code="9">0-8218-0401-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32856441</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010545373</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.24</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 130</subfield><subfield code="0">(DE-625)143082:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Levi, Ran</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172931134</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On finite groups and homotopy theory</subfield><subfield code="c">Ran Levi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 100 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">American Mathematical Society: Memoirs of the American Mathematical Society</subfield><subfield code="v">567</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Volume 118, Number 567 (end of volume)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Eindige groepen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homotopie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Loop spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Perfekte Gruppe</subfield><subfield code="0">(DE-588)4247757-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopie</subfield><subfield code="0">(DE-588)4025803-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schleifenraum</subfield><subfield code="0">(DE-588)4179711-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Homotopie</subfield><subfield code="0">(DE-588)4025803-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Perfekte Gruppe</subfield><subfield code="0">(DE-588)4247757-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Perfekte Gruppe</subfield><subfield code="0">(DE-588)4247757-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Schleifenraum</subfield><subfield code="0">(DE-588)4179711-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">American Mathematical Society: Memoirs of the American Mathematical Society</subfield><subfield code="v">567</subfield><subfield code="w">(DE-604)BV008000141</subfield><subfield code="9">567</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007028509&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007028509</subfield></datafield></record></collection> |
id | DE-604.BV010545373 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:54:48Z |
institution | BVB |
isbn | 0821804014 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007028509 |
oclc_num | 32856441 |
open_access_boolean | |
owner | DE-824 DE-384 DE-739 DE-12 DE-355 DE-BY-UBR DE-29T DE-91G DE-BY-TUM DE-83 DE-188 |
owner_facet | DE-824 DE-384 DE-739 DE-12 DE-355 DE-BY-UBR DE-29T DE-91G DE-BY-TUM DE-83 DE-188 |
physical | XIII, 100 S. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
record_format | marc |
series | American Mathematical Society: Memoirs of the American Mathematical Society |
series2 | American Mathematical Society: Memoirs of the American Mathematical Society |
spelling | Levi, Ran 1961- Verfasser (DE-588)172931134 aut On finite groups and homotopy theory Ran Levi Providence, RI 1995 XIII, 100 S. txt rdacontent n rdamedia nc rdacarrier American Mathematical Society: Memoirs of the American Mathematical Society 567 Volume 118, Number 567 (end of volume) Eindige groepen gtt Homotopie gtt Finite groups Homotopy theory Loop spaces Perfekte Gruppe (DE-588)4247757-8 gnd rswk-swf Homotopie (DE-588)4025803-8 gnd rswk-swf Homotopietheorie (DE-588)4128142-1 gnd rswk-swf Endliche Gruppe (DE-588)4014651-0 gnd rswk-swf Schleifenraum (DE-588)4179711-5 gnd rswk-swf Endliche Gruppe (DE-588)4014651-0 s Homotopie (DE-588)4025803-8 s DE-604 Perfekte Gruppe (DE-588)4247757-8 s Homotopietheorie (DE-588)4128142-1 s Schleifenraum (DE-588)4179711-5 s American Mathematical Society: Memoirs of the American Mathematical Society 567 (DE-604)BV008000141 567 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007028509&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Levi, Ran 1961- On finite groups and homotopy theory American Mathematical Society: Memoirs of the American Mathematical Society Eindige groepen gtt Homotopie gtt Finite groups Homotopy theory Loop spaces Perfekte Gruppe (DE-588)4247757-8 gnd Homotopie (DE-588)4025803-8 gnd Homotopietheorie (DE-588)4128142-1 gnd Endliche Gruppe (DE-588)4014651-0 gnd Schleifenraum (DE-588)4179711-5 gnd |
subject_GND | (DE-588)4247757-8 (DE-588)4025803-8 (DE-588)4128142-1 (DE-588)4014651-0 (DE-588)4179711-5 |
title | On finite groups and homotopy theory |
title_auth | On finite groups and homotopy theory |
title_exact_search | On finite groups and homotopy theory |
title_full | On finite groups and homotopy theory Ran Levi |
title_fullStr | On finite groups and homotopy theory Ran Levi |
title_full_unstemmed | On finite groups and homotopy theory Ran Levi |
title_short | On finite groups and homotopy theory |
title_sort | on finite groups and homotopy theory |
topic | Eindige groepen gtt Homotopie gtt Finite groups Homotopy theory Loop spaces Perfekte Gruppe (DE-588)4247757-8 gnd Homotopie (DE-588)4025803-8 gnd Homotopietheorie (DE-588)4128142-1 gnd Endliche Gruppe (DE-588)4014651-0 gnd Schleifenraum (DE-588)4179711-5 gnd |
topic_facet | Eindige groepen Homotopie Finite groups Homotopy theory Loop spaces Perfekte Gruppe Homotopietheorie Endliche Gruppe Schleifenraum |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007028509&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008000141 |
work_keys_str_mv | AT leviran onfinitegroupsandhomotopytheory |