The Monte Carlo method in condensed matter physics:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | German |
Veröffentlicht: |
Berlin [u.a.]
Springer
1995
|
Ausgabe: | 2., corr. and updated ed. |
Schriftenreihe: | Topics in applied physics
71 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XX, 418 S. graph. Darst. |
ISBN: | 3540601740 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010467121 | ||
003 | DE-604 | ||
005 | 20040923 | ||
007 | t | ||
008 | 951030s1995 gw d||| |||| 00||| ger d | ||
016 | 7 | |a 944855768 |2 DE-101 | |
020 | |a 3540601740 |c kart. : DM 78.00 |9 3-540-60174-0 | ||
035 | |a (OCoLC)32891368 | ||
035 | |a (DE-599)BVBBV010467121 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-703 |a DE-91 |a DE-706 |a DE-29T |a DE-634 |a DE-11 | ||
050 | 0 | |a QC174.85.M64 | |
082 | 0 | |a 530.4/1/0113 |2 20 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UP 1300 |0 (DE-625)146346: |2 rvk | ||
084 | |a PHY 016f |2 stub | ||
084 | |a PHY 602f |2 stub | ||
084 | |a PHY 604f |2 stub | ||
245 | 1 | 0 | |a The Monte Carlo method in condensed matter physics |c ed. by K. Binder. With contributions by A. Baumgärtner ... |
250 | |a 2., corr. and updated ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 1995 | |
300 | |a XX, 418 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Topics in applied physics |v 71 | |
650 | 4 | |a Condensed matter | |
650 | 4 | |a Monte Carlo method | |
650 | 4 | |a Statistical physics | |
650 | 0 | 7 | |a Monte-Carlo-Simulation |0 (DE-588)4240945-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Mechanik |0 (DE-588)4056999-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Festkörperphysik |0 (DE-588)4016921-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kondensierte Materie |0 (DE-588)4132810-3 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Kondensierte Materie |0 (DE-588)4132810-3 |D s |
689 | 0 | 1 | |a Statistische Mechanik |0 (DE-588)4056999-8 |D s |
689 | 0 | 2 | |a Monte-Carlo-Simulation |0 (DE-588)4240945-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Monte-Carlo-Simulation |0 (DE-588)4240945-7 |D s |
689 | 1 | 1 | |a Festkörperphysik |0 (DE-588)4016921-2 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Binder, Kurt |e Sonstige |4 oth | |
700 | 1 | |a Baumgärtner, Artur |e Sonstige |4 oth | |
830 | 0 | |a Topics in applied physics |v 71 |w (DE-604)BV008007504 |9 71 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006974998&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-006974998 |
Datensatz im Suchindex
_version_ | 1804124900282073088 |
---|---|
adam_text | THE MONT
E CARL
O
METHO
D IN CONDENSED
MATTE
R PHYSICS
EDITED BY K. BINDER
WIT
H CONTRIBUTION
S BY
A. BAUMGAERTNE
R K. BINDER A.N. BURKIT
T
D.M
. CEPERLEY H
. D
E RAED
T A.M. FERRENBER
G
D.W. HEERMAN
N H.J. HERRMAN
N D.P
. LANDA
U
D
. LEVESQUE W. VO
N DER LINDE
N J.D
. REGER
K.E
. SCHMID
T W. SELKE D
. STAUFFER
R.H. SWENDSEN J.-S. WAN
G J.J. WEIS A.P
. YOUN
G
SECOND, CORRECTE
D AN
D UPDATE
D EDITIO
N
WITH 83 FIGURE
S
SPRINGER
1. INTRODUCTION
BY K. BINDER (WITH 9 FIGURES) 1
1.1 GENERA
L REMARK
S 1
1.2 PROGRES
S IN TH
E UNDERSTANDIN
G OF FINIT
E SIZE EFFECTS
A
T PHAS
E TRANSITION
S 4
1.2.1 ASYMMETRIE FIRST-ORDE
R PHAS
E TRANSITIO
N 4
1.2.2 COEXISTING PHASE
S 9
1.2.3 CRITICAL PHENOMEN
A STUDIES
IN THE MICROCANONICA
L ENSEMBLE 10
1.2.4 ANISOTROP
Y EFFECTS IN FINIT
E SIZE SCALING 13
1.3 STATISTICAL ERROR
S 13
1.4 FINA
L REMARK
S 18
REFERENCES 19
2. VECTORISATION OF MONTE CARLO PROGRAMS FOR LATTICE MODELS
USING SUPERCOMPUTERS
BY D.P
. LANDA
U (WITH 11 FIGURES) 23
2.1 INTRODUCTIO
N 23
2.2 TECHNICAL DETAIL
S 24
2.2.1 BASIC PRINCIPLES 24
2.2.2 SOME DOS
AN
D DON TS
OF VECTORISATIO
N 26
2.3 SIMPLE VECTORISATIO
N ALGORITHMS 27
2.4 VECTORISED MULTISPI
N CODIN
G ALGORITHMS 28
2.5 VECTORISED MULTILATTIC
E CODIN
G ALGORITHMS 32
2.6 VECTORISED MICROCANONICA
L ALGORITHMS 34
2.7 SOME RECENT RESULTS FROM VECTORISED ALGORITHM
S 35
2.7.1 ISING MODE
L CRITICAL BEHAVIOU
R 35
2.7.2 FIRST-ORDE
R TRANSITION
S IN POTT
S MODEL
S 36
2.7.3 DYNAMI
C CRITICAL BEHAVIOU
R 37
2.7.4 SURFACE AN
D INTERFACE PHAS
E TRANSITION
S 39
2.7.5 BULK CRITICAL BEHAVIOUR IN CLASSICAL SPIN SYSTEMS . 42
2.7.6 QUANTU
M SPIN SYSTEMS 43
2.7.7 SPIN EXCHANGE AN
D DIFFUSION 45
2.7.8 IMPURIT
Y SYSTEMS 46
2.7.9 OTHE
R STUDIES 47
X CONTENTS
2.8 CONCLUSION 49
REFERENCES 49
3. PARALLEL ALGORITHMS FOR STATISTICAL PHYSICS PROBLEMS
BY D.W. HEERMAN
N AN
D A.N. BURKIT
T (WITH 8 FIGURES) 53
3.1 PARADIGM
S OF PARALLEL COMPUTIN
G 54
3.1.1 PHYSICS-BASED DESCRIPTIO
N 54
(A) EVENT PARALLELISM 55
(B) GEOMETRI
E PARALLELISM 56
(C) ALGORITHMIC PARALLELISM 57
3.1.2 MACHINE-BASED DESCRIPTIO
N 57
(A) SIM
D ARCHITECTUR
E 57
(B) MIM
D ARCHITECTURE 58
(C) THE CONNECTIVITY 58
(D) MEASUREMENT
S OF MACHIN
E PERFORMANCE 59
3.2 APPLICATIONS ON FINE-GRAINE
D SIM
D MACHINE
S 62
3.2.1 SPIN SYSTEMS 62
3.2.2 MOLECULA
R DYNAMIC
S 63
3.3 APPLICATIONS ON COARSE-GRAINE
D MIM
D MACHINE
S 64
3.3.1 MOLECULA
R DYNAMIC
S 64
3.3.2 CLUSTER ALGORITHMS FOR THE ISING MODE
L 66
3.3.3 DAT
A PARALLE
L ALGORITHMS 69
(A) LONG-RANG
E INTERACTION
S 70
(B) POLYMER
S 70
3.4 PROSPECT
S 72
REFERENCES 73
4. NEW MONTE CARLO METHODS FOR IMPROVED EFFICIENCY
OF COMPUTER SIMULATIONS IN STATISTICAL MECHANICS
BY R.H. SWENDSEN, J.-S. WAN
G AN
D A.M. FERRENBER
G 75
4.1 OVERVIEW 75
4.2 ACCELERATION ALGORITHMS 76
4.2.1 CRITICA
L SLOWING DOW
N
AN
D STANDAR
D MONT
E CARL
O METHO
D 76
4.2.2 FORTUIN-KASTELEY
N TRANSFORMATIO
N 77
4.2.3 SWENDSEN-WAN
G ALGORITHM 78
4.2.4 FURTHE
R DEVELOPMENT
S 80
4.2.5 REPLICA MONT
E CARL
O METHO
D 82
4.2.6 MULTIGRI
D MONT
E CARL
O METHO
D 83
4.3 HISTOGRA
M METHOD
S 84
4.3.1 TH
E SINGLE-HISTOGRAM METHO
D 84
4.3.2 TH
E MULTIPLE-HISTOGRA
M METHO
D 85
4.3.3 HISTOR
Y AN
D APPLICATION
S 87
4.4 SUMMAR
Y 89
REFERENCES 89
CONTENT
S
XI
5. SIMULATION OF RANDOM GROWTH PROCESSES
BY HJ
. HERRMAN
N (WITH 17 FIGURES) 93
5.1 IRREVERSIBLE GROWT
H OF CLUSTERS 93
5.1.1 A SIMPLE EXAMPLE OF CLUSTE
R GROWTH
:
THE EDEN MODE
L 93
5.1.2 LAPLACIA
N GROWT
H 96
(A) MOVING BOUNDAR
Y CONDITIO
N PROBLEM
S 96
(B) NUMERICA
L SIMULATION OF DIELECTRIC BREAKDOW
N .
AN
D DL
A 97
(C) FRACTUR
E 101
5.2 REVERSIBLE PROBABILISTI
C GROWT
H 103
5.2.1 CELLULAR AUTOMAT
A 103
5.2.2 DAMAG
E SPREADIN
G IN TH
E MONT
E CARL
O METHO
D . . 104
5.2.3 NUMERICA
L RESULTS FOR THE ISING MODE
L 105
5.2.4 HEA
T BATH VERSUS GLAUBE
R DYNAMIC
S
IN THE ISING MODEL 107
5.2.5 RELATIONSHI
P BETWEEN DAMAG
E
AN
D THERMODYNAMI
C PROPERTIE
S 108
5.2.6 DAMAG
E CLUSTERS 112
5.2.7 DAMAG
E IN SPIN GLASSES 114
5.2.8 MOR
E ABOU
T DAMAG
E SPREADIN
G 117
5.3 CONCLUSIO
N 117
REFERENCES 118
6. RECENT PROGRESS IN THE SIMULATION OF CLASSICAL FLUIDS
BY D
. LEVESQUE AN
D J.J. WEIS 121
6.1 IMPROVEMENT
S OF THE MONT
E CARL
O METHO
D 121
6.1.1 METROPOLI
S ALGORITHM 121
6.1.2 MONT
E CARL
O SIMULATION
S
AN
D STATISTICAL ENSEMBLES 123
(A) CANONICAL
, GRAN
D CANONICA
L
AN
D SEMI-GRAND ENSEMBLES 123
(B) GIBB
S ENSEMBLE 124
(C) M
C ALGORITHM FOR ADHESIVE PARTICLES 126
6.1.3 MONT
E CARL
O COMPUTATIO
N OF THE CHEMICAL POTENTIA
L
AN
D THE FRE
E ENERGY 126
(A) CHEMICAL POTENTIA
L 126
(B) FREE ENERGY 129
6.1.4 ALGORITHMS FOR COULOMBI
C AN
D DIELECTRIC FLUID
S . . 130
6.2 PUR
E PHASE
S AN
D MIXTURE
S OF SIMPLE FLUID
S 132
6.2.1 TWO-DIMENSIONA
L SIMPLE FLUID
S 132
6.2.2 THREE-DIMENSIONA
L MONATOMI
C FLUIDS 134
6.2.3 LENNARD-JONE
S FLUIDS AN
D SIMILAR SYSTEMS 136
6.2.4 REAL FLUID
S 138
6.2.5 MIXTURE
S OF SIMPLE FLUID
S 140
XII CONTENTS
(A) HAR
D COR
E SYSTEMS 140
(B) LJ MIXTURE
S 141
(C) POLYDISPERSE FLUIDS 143
6.3 COULOMBI
C AN
D IONI
C FLUIDS 144
6.3.1 ONE-COMPONEN
T PLASMA
, TWO-COMPONEN
T PLASMA
AN
D PRIMITIVE MODEL
S OF ELECTROLYTE SOLUTIONS ...
. 144
(A) OC
P AN
D TC
P 144
(B) PRIMITIVE MODEL
S 145
6.3.2 REALISTIC IONI
C SYSTEMS 147
6.4 SIMULATIONS OF INHOMOGENEOU
S SIMPLE FLUID
S 149
6.4.1 LIQUID-VAPOU
R INTERFACES 149
6.4.2 FLUID-SOLI
D INTERFACES 150
6.4.3 INTERFACES OF CHARGE
D SYSTEMS 153
6.4.4 FLUIDS IN NARRO
W PORE
S 155
6.5 MOLECULAR LIQUIDS: MODE
L SYSTEMS 157
6.5.1 TWO-DIMENSIONA
L SYSTEMS 157
6.5.2 CONVEX MOLECULES (THREE-DIMENSIONAL) 158
(A) VIRAL COEFFICIENTS AN
D TH
E EQUATIO
N OF STATE ..
. 159
(B) PAI
R DISTRIBUTIO
N FUNCTIO
N 160
(C) PHAS
E TRANSITION
S 161
6.5.3 SITE-SIT
E POTENTIAL
S 163
6.5.4 CHAI
N MOLECULES 164
6.5.5 DIPOLA
R SYSTEMS 165
6.5.6 QUADRUPOLA
R SYSTEMS 167
6.5.7 POLARIZABL
E POLA
R FLUIDS 167
6.6 MOLECULAR LIQUIDS: REALISTIC SYSTEMS 168
6.6.1 NITROGE
N (N
2
) 169
6.6.2 HALOGEN
S (BR
2
, CL
2
, I
2
) 169
6.6.3 BENZENE (C
6
H
6
) 170
6.6.4 NAPHTHALEN
E (C
10
H
8
) 170
6.6.5 N-ALKANES: CH
3
(CH
2
)
YY
2
CH
3
171
6.6.6 WATE
R (H
2
0
) 172
6.6.7 METHANO
L (CH
3
OH
) 177
6.6.8 OTHE
R POLA
R SYSTEMS 178
6.6.9 MIXTURE
S 178
6.7 SOLUTIONS 179
6.7.1 INFINITE DILUTIO
N 179
6.7.2 FINIT
E CONCENTRATIO
N 181
6.7.3 POLYELECTROLYTES AN
D MICELLES 183
6.8 INTERFACES IN MOLECULA
R SYSTEMS 185
6.8.1 POLA
R SYSTEMS 185
(A) MODE
L SYSTEMS 186
(B) REALISTIC SYSTEMS 187
6.8.2 CHAI
N MOLECULES CONFINED BY HAR
D PLATES 190
REFERENCES 191
CONTENT
S
XIII
7. MONTE CARLO TECHNIQUES FOR QUANTUM FLUIDS, SOLIDS AND DROPLETS
BY K.E. SCHMIDT AN
D D.M
. CEPERLEY (WITH 12 FIGURES) 205
7.1 VARIATIONA
L METHO
D 207
7.1.1 VARIATIONA
L WAVEFUNCTIONS 207
7.1.2 THE PAI
R PRODUC
T WAVEFUNCTION 207
7.1.3 THREE-BOD
Y CORRELATION
S 209
7.1.4 BACKFLOW CORRELATION
S 210
7.1.5 PAIRIN
G CORRELATION
S 211
7.1.6 SHADOW WAVEFUNCTIONS 212
7.1.7 WAVEFUNCTION OPTIMISATIO
N 214
7.2 GREEN
S FUNCTIO
N MONT
E CARL
O AN
D RELATED METHOD
S ...
. 215
7.2.1 OUTLIN
E OF THE METHO
D 215
7.2.2 FERMIO
N METHOD
S 216
7.2.3 SHADOW IMPORTANC
E FUNCTION
S 217
7.3 PAT
H INTEGRA
L MONT
E CARL
O METHO
D 218
7.3.1 PIM
C METHODOLOG
Y 218
7.3.2 THE HIGH TEMPERATUR
E DENSITY MATRI
X 219
7.3.3 MONT
E CARL
O ALGORITHM 221
7.3.4 SIMPLE METROPOLI
S MONT
E CARL
O METHO
D 221
7.3.5 NORMA
L MOD
E METHOD
S 222
7.3.6 THREADIN
G ALGORITHM 222
7.3.7 BISECTION AN
D STAGING METHOD
S 222
7.3.8 SAMPLING PERMUTATION
S 224
7.3.9 CALCULATIO
N OF TH
E ENERGY 225
7.3.10 COMPUTATIO
N OF THE SUPERFLUID DENSITY 226
7.3.11 EXCHANGE IN QUANTU
M CRYSTALS 227
7.3.12 COMPARISO
N OF GFM
C WITH PIM
C 229
7.3.13 APPLICATIONS 230
7.4 SOME RESULTS FOR BULK HELIUM 230
7.4.1
4
H
E RESULTS 230
7.4.2
3
H
E RESULTS 233
7.4.3 SOLID HE 234
7.5 MOMENTU
M AN
D RELATED DISTRIBUTION
S 234
7.5.1 TH
E SINGLE-PARTICLE DENSITY MATRI
X 234
7.5.2 Y-SCALING 236
7.5.3 MOMENTU
M DISTRIBUTIO
N RESULTS 237
7.6 DROPLET
S AN
D SURFACES 240
7.6.1 GROUN
D STATES OF HE DROPLET
S 240
7.6.2 EXCITATION
S IN DROPLET
S 242
7.6.3
3
H
E DROPLET
S 242
7.6.4 DROPLET
S A
T FINIT
E TEMPERATUR
E 243
7.6.5 SURFACES AN
D INTERFACES 243
7.7 FUTUR
E PROSPECT
S 244
REFERENCES 245
XIV CONTENT
S
8. QUANTUM LATTICE PROBLEMS
BY H. DE RAED
T AN
D W. VON DER LINDEN (WITH 1 FIGURE) 249
8.1 OVERVIEW 249
8.2 MODELS 251
8.3 VARIATIONA
L MONT
E CARL
O METHO
D 253
8.3.1 METHO
D AN
D TRIA
L WAVEFUNCTIONS 253
8.3.2 RESULTS 255
8.4 GREEN
S FUNCTIO
N MONT
E CARL
O METHO
D 256
8.4.1 METHO
D 256
8.4.2 RESULTS 261
8.5 GRAN
D CANONICA
L QUANTU
M MONT
E CARL
O METHO
D 263
8.5.1 METHO
D 263
8.5.2 APPLICATIONS 265
8.6 PROJECTO
R QUANTU
M MONT
E CARL
O METHO
D 267
8.6.1 METHO
D 267
8.6.2 APPLICATIONS 270
8.7 FUNDAMENTA
L DIFFICULTIES 270
8.7.1 THE SIGN PROBLE
M 270
8.7.2 NUMERICAL INSTABILITIES 273
8.7.3 DYNAMI
C SUSCEPTIBILITIES 274
8.7.4 APPLICABILITY 275
8.8 CONCLUDIN
G REMARK
S 276
8.A APPENDIX 276
REFERENCES 280
9. SIMULATIONS OF MACROMOLECULES
BY A. BAUMGAERTNE
R 285
9.1 TECHNIQUE
S AN
D MODEL
S 285
9.1.1 POLYME
R MODEL
S 285
(A) LATTIC
E MODEL
S 285
(B) OFF-LATTICE MODEL
S 286
9.1.2 MONT
E CARL
O TECHNIQUE
S 286
(A) KINK-JUM
P AN
D CRANKSHAF
T ALGORITHM 286
(B) REPTATIO
N ALGORITHM 287
(C) GENERA
L REPTATIO
N ALGORITHM 287
(D) GRAN
D CANONICA
L REPTATIO
N ALGORITHM 287
(E) COLLECTIVE REPTATIO
N METHO
D 287
(F) PIVO
T ALGORITHM 288
(G) GROWT
H AN
D SCANNING ALGORITHMS 288
9.2 AMORPHOU
S SYSTEMS 289
9.2.1 DYNAMIC
S OF POLYMER
S 289
(A) POLYME
R MELTS 289
(B) POLYMER
S IN FLO
W 290
(C) GEL ELECTROPHORESIS 290
9.2.2 TH
E GLASSY STATE 291
CONTENT
S
XV
9.2.3 EQUATIO
N OF STAT
E 292
9.3 DISORDE
R EFFECTS 293
9.3.1 POLYME
R CHAIN
S IN RANDO
M MEDI
A 293
9.3.2 EFFECT OF DISORDE
R ON PHAS
E TRANSITION
S 294
9.3.3 DIFFUSION IN DISORDERE
D MEDI
A 295
9.4 MESOMORPHI
C SYSTEMS 296
9.4.1 HAR
D ROD
S 296
9.4.2 SEMIRIGID CHAIN
S 297
9.4.3 ANISOTROPI
E INTERACTION
S 298
9.5 NETWORK
S 298
9.5.1 TETHERE
D MEMBRANE
S 298
9.5.2 BRANCHED POLYMER
S AN
D RANDO
M NETWORK
S 300
9.6 SEGREGATION 302
9.6.1 COLLAPSE TRANSITIO
N 302
9.6.2 POLYMER MIXTURE
S 303
9.6.3 DYNAMIC
S OF DECOMPOSITIO
N 305
9.7 SURFACES AN
D INTERFACES 305
9.7.1 ADSORPTIO
N ON ROUG
H SURFACES 305
9.7.2 ENTROPI
E REPULSION 306
9.7.3 CONFINED POLYME
R MELTS 306
9.8 SPECIAL POLYMERS 308
9.8.1 POLYELECTROLYTES 308
9.8.2 PROTEIN
S 309
(A) PROTEI
N FOLDIN
G 309
(B) PROTEI
N DYNAMIC
S 310
REFERENCES 310
10. PERCOLATION, CRITICAL PHENOMENA IN DILUTE MAGNETS,
CELLULAR AUTOMATA AND RELATED PROBLEMS
BY D
. STAUNE
R (WITH 2 FIGURES) 317
10.1 PERCOLATIO
N 317
10.2 DILUT
E FERROMAGNET
S 320
10.3 CELLULAR AUTOMAT
A 321
10.4 MULTISPI
N PROGRAMMIN
G OF CELLULAR AUTOMAT
A 322
10.5 KAUFFMAN MODE
L AN
D DA SILVA-HERRMAN
N ALGORITHM ...
. 324
REFERENCES 327
11. INTERFACES, WETTING PHENOMENA, INCOMMENSURATE PHASES
BY W. SELKE (WITH 12 FIGURES) 329
11.1 INTERFACES IN ISING MODEL
S 329
11.1.1 THE THREE-DIMENSIONA
L NEAREST-NEIGHBOU
R
ISING MODE
L 329
11.1.2 ALLOYS AN
D MICROEMULSION
S 335
11.1.3 ADSORBATE
S AN
D TWO-DIMENSIONA
L SYSTEMS 336
11.2 INTERFACES IN MULTISTAT
E MODEL
S 341
XVI CONTENTS
11.3 DYNAMICA
L ASPECTS 343
11.3.1 GROWT
H OF WETTIN
G LAYERS AN
D INTERFACES 343
11.3.2 DOMAI
N GROWT
H 345
11.4 SPATIALLY MODULATE
D STRUCTURE
S 346
11.5 CONCLUSION
S 351
REFERENCES 352
12. SPIN GLASSES, ORIENTATIONA
L GLASSES AND RANDOM FIELD SYSTEMS
BY A.P. YOUNG
, J.D
. REGER AN
D K. BINDER (WITH 11 FIGURES) ...
. 355
12.1 SPIN GLASSES 355
12.1.1 THE SPIN GLAS
S TRANSITIO
N 356
12.1.2 TH
E EDWARD
S ANDERSO
N MODE
L 357
12.1.3 PHAS
E TRANSITION
S 357
12.1.4 THE LOW TEMPERATUR
E STAT
E 362
12.1.5 TH
E VORTEX GLAS
S 364
12.2 POTT
S GLASSES 365
12.2.1 INTRODUCTIO
N T
O POTT
S GLASSES 365
12.2.2 MEAN-FIEL
D THEOR
Y 366
12.2.4 TH
E CRITICAL DIMENSION
S 367
12.2.4 TH
E SHORT-RANG
E POTT
S MODE
L 367
(A) PHENOMENOLOGICA
L T=
0 SCALING 368
(B) MONT
E CARL
O SIMULATION
S 368
(C) TRANSFER MATRI
X CALCULATION
S 369
(D) HIGH-TEMPERATUR
E SERIES EXPANSION
S 370
12.3 ORIENTATIONA
L GLASSES 370
12.3.1 INTRODUCTIO
N T
O ORIENTATIONA
L GLASSES 370
12.3.2 STATIC AN
D DYNAMI
C PROPERTIE
S OF THE ISOTROPI
E
ORIENTATIONA
L GLASS (M = 3) IN TW
O
AN
D THRE
E DIMENSION
S 372
12.3.3 MOR
E REALISTIC MODEL
S . . YY 376
12.4 TH
E RANDOM-FIEL
D ISING MODE
L 377
12.5 CONCLUDIN
G REMARK
S AN
D OUTLOO
K 379
REFERENCES 380
13. RECENT DEVELOPMENTS IN THE MONTE CARLO SIMULATION
OF CONDENSED MATTER
BY K. BINDER, A. BAUMGAERTNER
, A.N. BURKITT
, D
. CEPERLEY,
A.M. FERRENBERG
, D.W. HEERMANN
, H.J. HERRMANN
, D.P
. LANDAU
,
W. VON DER LINDEN, H
. D
E RAEDT
, K.E. SCHMIDT, W. SELKE,
D
. STAUFFER AN
D A.P. YOUN
G 385
13.1 PROGRES
S IN TH
E UNDERSTANDIN
G OF FINIT
E SIZE EFFECTS 385
13.2 VECTORIZATIO
N OF MONT
E CARL
O PROGRAM
S FOR LATTICE
MODEL
S USIN
G SUPERCOMPUTERS
: NE
W RESULTS 390
13.3 PARALLE
L ALGORITHM
S FOR STATISTICAL-PHYSICS
PROBLEMS
: A RECENT PERSPECTIV
E 391
CONTENT
S
XVII
13.4 NEW MONT
E CARL
O METHOD
S FOR IMPROVE
D EFFICIENCY:
RECENT ASPECTS 393
13.5 QUANTU
M FLUIDS
, SOLIDS AN
D DROPLETS
:
SOME RECENT RESULTS 394
13.6 QUANTU
M LATTICE PROBLEMS
: RECENT RESULTS 394
13.7 SIMULATIONS OF POLYMERS
: SOME RECENT RESULTS 396
13.8 PERCOLATION
, DILUTE
D MAGNETS
, CELLULAR AUTOMATA
:
SOME RECENT DEVELOPMENT
S 398
13.9 INTERFACES, WETTIN
G PHENOMENA
, INCOMMENSURAT
E PHASES:
SOME RECENT RESULTS 398
13.10 SPIN GLASSES, ORIENTATIONA
L GLASSES, AN
D RANDO
M
FIELD SYSTEMS: SOME RECENT RESULTS 399
13.11 SIMULATIO
N OF RANDO
M GROWT
H PROCESSES: SOME
COMMENT
S ON RECENT RESULTS 402
13.12 CONCLUDIN
G REMARK
S 403
REFERENCES 404
SUBJECT INDEX
411
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV010467121 |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.85.M64 |
callnumber-search | QC174.85.M64 |
callnumber-sort | QC 3174.85 M64 |
callnumber-subject | QC - Physics |
classification_rvk | SK 950 UP 1300 |
classification_tum | PHY 016f PHY 602f PHY 604f |
ctrlnum | (OCoLC)32891368 (DE-599)BVBBV010467121 |
dewey-full | 530.4/1/0113 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.4/1/0113 |
dewey-search | 530.4/1/0113 |
dewey-sort | 3530.4 11 3113 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
edition | 2., corr. and updated ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02374nam a2200601 cb4500</leader><controlfield tag="001">BV010467121</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040923 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">951030s1995 gw d||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">944855768</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540601740</subfield><subfield code="c">kart. : DM 78.00</subfield><subfield code="9">3-540-60174-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32891368</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010467121</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC174.85.M64</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.4/1/0113</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 1300</subfield><subfield code="0">(DE-625)146346:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 016f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 602f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 604f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Monte Carlo method in condensed matter physics</subfield><subfield code="c">ed. by K. Binder. With contributions by A. Baumgärtner ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2., corr. and updated ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 418 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Topics in applied physics</subfield><subfield code="v">71</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensed matter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Mechanik</subfield><subfield code="0">(DE-588)4056999-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörperphysik</subfield><subfield code="0">(DE-588)4016921-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kondensierte Materie</subfield><subfield code="0">(DE-588)4132810-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kondensierte Materie</subfield><subfield code="0">(DE-588)4132810-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistische Mechanik</subfield><subfield code="0">(DE-588)4056999-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Festkörperphysik</subfield><subfield code="0">(DE-588)4016921-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Binder, Kurt</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baumgärtner, Artur</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Topics in applied physics</subfield><subfield code="v">71</subfield><subfield code="w">(DE-604)BV008007504</subfield><subfield code="9">71</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006974998&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006974998</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV010467121 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:53:00Z |
institution | BVB |
isbn | 3540601740 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006974998 |
oclc_num | 32891368 |
open_access_boolean | |
owner | DE-703 DE-91 DE-BY-TUM DE-706 DE-29T DE-634 DE-11 |
owner_facet | DE-703 DE-91 DE-BY-TUM DE-706 DE-29T DE-634 DE-11 |
physical | XX, 418 S. graph. Darst. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer |
record_format | marc |
series | Topics in applied physics |
series2 | Topics in applied physics |
spelling | The Monte Carlo method in condensed matter physics ed. by K. Binder. With contributions by A. Baumgärtner ... 2., corr. and updated ed. Berlin [u.a.] Springer 1995 XX, 418 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Topics in applied physics 71 Condensed matter Monte Carlo method Statistical physics Monte-Carlo-Simulation (DE-588)4240945-7 gnd rswk-swf Statistische Mechanik (DE-588)4056999-8 gnd rswk-swf Festkörperphysik (DE-588)4016921-2 gnd rswk-swf Kondensierte Materie (DE-588)4132810-3 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Kondensierte Materie (DE-588)4132810-3 s Statistische Mechanik (DE-588)4056999-8 s Monte-Carlo-Simulation (DE-588)4240945-7 s DE-604 Festkörperphysik (DE-588)4016921-2 s Binder, Kurt Sonstige oth Baumgärtner, Artur Sonstige oth Topics in applied physics 71 (DE-604)BV008007504 71 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006974998&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | The Monte Carlo method in condensed matter physics Topics in applied physics Condensed matter Monte Carlo method Statistical physics Monte-Carlo-Simulation (DE-588)4240945-7 gnd Statistische Mechanik (DE-588)4056999-8 gnd Festkörperphysik (DE-588)4016921-2 gnd Kondensierte Materie (DE-588)4132810-3 gnd |
subject_GND | (DE-588)4240945-7 (DE-588)4056999-8 (DE-588)4016921-2 (DE-588)4132810-3 (DE-588)4143413-4 |
title | The Monte Carlo method in condensed matter physics |
title_auth | The Monte Carlo method in condensed matter physics |
title_exact_search | The Monte Carlo method in condensed matter physics |
title_full | The Monte Carlo method in condensed matter physics ed. by K. Binder. With contributions by A. Baumgärtner ... |
title_fullStr | The Monte Carlo method in condensed matter physics ed. by K. Binder. With contributions by A. Baumgärtner ... |
title_full_unstemmed | The Monte Carlo method in condensed matter physics ed. by K. Binder. With contributions by A. Baumgärtner ... |
title_short | The Monte Carlo method in condensed matter physics |
title_sort | the monte carlo method in condensed matter physics |
topic | Condensed matter Monte Carlo method Statistical physics Monte-Carlo-Simulation (DE-588)4240945-7 gnd Statistische Mechanik (DE-588)4056999-8 gnd Festkörperphysik (DE-588)4016921-2 gnd Kondensierte Materie (DE-588)4132810-3 gnd |
topic_facet | Condensed matter Monte Carlo method Statistical physics Monte-Carlo-Simulation Statistische Mechanik Festkörperphysik Kondensierte Materie Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006974998&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008007504 |
work_keys_str_mv | AT binderkurt themontecarlomethodincondensedmatterphysics AT baumgartnerartur themontecarlomethodincondensedmatterphysics |