Orienting objects in a minimum number of robot sweeping motions:
Abstract: "The technique described in this paper is an application of Brost's push-stability diagram, a graphical representation of the qualitative behaviour of an object when pushed in a horizontal plane by a flat fence, that is derived from some results of Mason. We describe an algorithm...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Edinburgh
1993
|
Schriftenreihe: | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper
619 |
Schlagworte: | |
Zusammenfassung: | Abstract: "The technique described in this paper is an application of Brost's push-stability diagram, a graphical representation of the qualitative behaviour of an object when pushed in a horizontal plane by a flat fence, that is derived from some results of Mason. We describe an algorithm that uses this diagram to calculate the minimum number of robot sweeping motions needed to put a randomly oriented planar object into a known orientation, and what these motions are." |
Beschreibung: | 10 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010461115 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 951102s1993 |||| 00||| engod | ||
035 | |a (OCoLC)32351173 | ||
035 | |a (DE-599)BVBBV010461115 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Deacon, Graham E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Orienting objects in a minimum number of robot sweeping motions |c Graham E. Deacon; Poh Lian Low, and Chris Malcolm |
264 | 1 | |a Edinburgh |c 1993 | |
300 | |a 10 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |v 619 | |
520 | 3 | |a Abstract: "The technique described in this paper is an application of Brost's push-stability diagram, a graphical representation of the qualitative behaviour of an object when pushed in a horizontal plane by a flat fence, that is derived from some results of Mason. We describe an algorithm that uses this diagram to calculate the minimum number of robot sweeping motions needed to put a randomly oriented planar object into a known orientation, and what these motions are." | |
650 | 7 | |a Mathematics |2 sigle | |
650 | 7 | |a Robotics and its application |2 sigle | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Robotics | |
700 | 1 | |a Low, Poh Lian |e Verfasser |4 aut | |
700 | 1 | |a Malcolm, Chris |e Verfasser |4 aut | |
810 | 2 | |a Department of Artificial Intelligence: DAI research paper |t University <Edinburgh> |v 619 |w (DE-604)BV010450646 |9 619 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006969840 |
Datensatz im Suchindex
_version_ | 1804124892463890432 |
---|---|
any_adam_object | |
author | Deacon, Graham E. Low, Poh Lian Malcolm, Chris |
author_facet | Deacon, Graham E. Low, Poh Lian Malcolm, Chris |
author_role | aut aut aut |
author_sort | Deacon, Graham E. |
author_variant | g e d ge ged p l l pl pll c m cm |
building | Verbundindex |
bvnumber | BV010461115 |
ctrlnum | (OCoLC)32351173 (DE-599)BVBBV010461115 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01650nam a2200349 cb4500</leader><controlfield tag="001">BV010461115</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">951102s1993 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32351173</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010461115</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deacon, Graham E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Orienting objects in a minimum number of robot sweeping motions</subfield><subfield code="c">Graham E. Deacon; Poh Lian Low, and Chris Malcolm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Edinburgh</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">University <Edinburgh> / Department of Artificial Intelligence: DAI research paper</subfield><subfield code="v">619</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "The technique described in this paper is an application of Brost's push-stability diagram, a graphical representation of the qualitative behaviour of an object when pushed in a horizontal plane by a flat fence, that is derived from some results of Mason. We describe an algorithm that uses this diagram to calculate the minimum number of robot sweeping motions needed to put a randomly oriented planar object into a known orientation, and what these motions are."</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Robotics and its application</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Low, Poh Lian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malcolm, Chris</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Artificial Intelligence: DAI research paper</subfield><subfield code="t">University <Edinburgh></subfield><subfield code="v">619</subfield><subfield code="w">(DE-604)BV010450646</subfield><subfield code="9">619</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006969840</subfield></datafield></record></collection> |
id | DE-604.BV010461115 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:52:53Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006969840 |
oclc_num | 32351173 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 10 S. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
record_format | marc |
series2 | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |
spelling | Deacon, Graham E. Verfasser aut Orienting objects in a minimum number of robot sweeping motions Graham E. Deacon; Poh Lian Low, and Chris Malcolm Edinburgh 1993 10 S. txt rdacontent n rdamedia nc rdacarrier University <Edinburgh> / Department of Artificial Intelligence: DAI research paper 619 Abstract: "The technique described in this paper is an application of Brost's push-stability diagram, a graphical representation of the qualitative behaviour of an object when pushed in a horizontal plane by a flat fence, that is derived from some results of Mason. We describe an algorithm that uses this diagram to calculate the minimum number of robot sweeping motions needed to put a randomly oriented planar object into a known orientation, and what these motions are." Mathematics sigle Robotics and its application sigle Mathematik Robotics Low, Poh Lian Verfasser aut Malcolm, Chris Verfasser aut Department of Artificial Intelligence: DAI research paper University <Edinburgh> 619 (DE-604)BV010450646 619 |
spellingShingle | Deacon, Graham E. Low, Poh Lian Malcolm, Chris Orienting objects in a minimum number of robot sweeping motions Mathematics sigle Robotics and its application sigle Mathematik Robotics |
title | Orienting objects in a minimum number of robot sweeping motions |
title_auth | Orienting objects in a minimum number of robot sweeping motions |
title_exact_search | Orienting objects in a minimum number of robot sweeping motions |
title_full | Orienting objects in a minimum number of robot sweeping motions Graham E. Deacon; Poh Lian Low, and Chris Malcolm |
title_fullStr | Orienting objects in a minimum number of robot sweeping motions Graham E. Deacon; Poh Lian Low, and Chris Malcolm |
title_full_unstemmed | Orienting objects in a minimum number of robot sweeping motions Graham E. Deacon; Poh Lian Low, and Chris Malcolm |
title_short | Orienting objects in a minimum number of robot sweeping motions |
title_sort | orienting objects in a minimum number of robot sweeping motions |
topic | Mathematics sigle Robotics and its application sigle Mathematik Robotics |
topic_facet | Mathematics Robotics and its application Mathematik Robotics |
volume_link | (DE-604)BV010450646 |
work_keys_str_mv | AT deacongrahame orientingobjectsinaminimumnumberofrobotsweepingmotions AT lowpohlian orientingobjectsinaminimumnumberofrobotsweepingmotions AT malcolmchris orientingobjectsinaminimumnumberofrobotsweepingmotions |