Random walks of infinitely many particles:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore [u.a.]
World Scientific
1994
|
Schriftenreihe: | Advanced series on statistical science & applied probability
1 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 191 S. |
ISBN: | 9810217846 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010459279 | ||
003 | DE-604 | ||
005 | 20020826 | ||
007 | t | ||
008 | 951031s1994 |||| 00||| eng d | ||
020 | |a 9810217846 |9 981-02-1784-6 | ||
035 | |a (OCoLC)832650824 | ||
035 | |a (DE-599)BVBBV010459279 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-824 |a DE-91G |a DE-20 |a DE-703 |a DE-19 | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a SK 840 |0 (DE-625)143261: |2 rvk | ||
084 | |a MAT 605f |2 stub | ||
100 | 1 | |a Révész, Pál |e Verfasser |4 aut | |
245 | 1 | 0 | |a Random walks of infinitely many particles |c Pál Révész |
264 | 1 | |a Singapore [u.a.] |b World Scientific |c 1994 | |
300 | |a XV, 191 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Advanced series on statistical science & applied probability |v 1 | |
650 | 0 | 7 | |a Irrfahrtsproblem |0 (DE-588)4162442-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vielteilchensystem |0 (DE-588)4063491-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Vielteilchensystem |0 (DE-588)4063491-7 |D s |
689 | 0 | 1 | |a Irrfahrtsproblem |0 (DE-588)4162442-7 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Advanced series on statistical science & applied probability |v 1 |w (DE-604)BV011932321 |9 1 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006968328&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-006968328 |
Datensatz im Suchindex
_version_ | 1804124890261880832 |
---|---|
adam_text | Contents
Preface v
Introduction xi
Notations and abbreviations xiii
I. RANDOM WALK OF A RANDOM FIELD
1 Brownian motion of a Poisson field 3
1.1 Poisson field 3
1.2 The model 5
1.3 New particles in a ball 6
1.4 The total number of particles visiting the unit ball 11
1.5 Death in C 17
1.6 Charged particles 21
1.7 The independence of the increments 22
1.8 Brownian density process 25
2 Extreme value problems 29
2.1 Introduction 29
2.2 Extreme values of Poisson type sequences 30
2.3 Lemmas 34
2.4 Proofs of Theorem 2.1, 2.2 and 2.3 42
2.5 Exploison in C 45
2.6 Charged particles 46
3 Changing the initial process and the motion 49
3.1 Introduction 49
3.2 Coupling 50
3.3 How to apply the coupling? 53
3.4 Changing the motion 55
vii
viii CONTENTS
II. BRANCHING RANDOM WALK
4 Branching random ¦walk starting ¦with one particle 61
4.1 Branching process 61
4.2 The model 62
4.3 On the moments of X(x,t) 66
4.4 Global limit theorems 72
4.5 Local limit theorems 76
4.6 Independence and branching 79
4.7 Random life time 80
4.8 Generalizations 81
5 Branching random walks of a random field 83
5.1 The model 83
5.2 A LIL and a CLT 84
5.3 On the locations of nonoccupied points 87
5.4 The covariance of A(z,T) 88
5.5 A generalization 89
6 Branching Wiener process starting ¦with one particle 91
6.1 The model 91
6.2 On the moments of ifi(A,i) 92
6.3 Global limit theorems 102
6.4 Local limit theorems 107
6.5 Particles located far away from the origin 108
6.6 Generalizations 108
7 Critical branching random ¦walk starting with one particle 109
7.1 Critical branching process 109
7.2 On the expectation of {x,t) 118
7.3 What might we expect? 121
8 Critical branching random walks of a random field 129
8.1 The number of visits in the origin 129
8.2 Clusters in case d — 1 133
8.3 No clusters in case d 2 136
9 Multitype branching random walk 139
9.1 Multitype branching process 139
9.2 The model 149
9.3 On the moments of A (x,t) 151
9.4 Global limit theorems 156
9.5 Local limit theorems 157
CONTENTS ix
9.6 Other cases 157
III. STRASSEN TYPE THEOREMS
10 Infinitely many independent particles 161
10.1 The original form of Strassen s law 161
10.2 On the coverage of S 163
11 Branching random walk 171
11.1 The question 171
11.2 The case m 2d 171
11.3 Branching Wiener process 173
Historical overview 179
References 185
Author Index 189
Subject Index 191
|
any_adam_object | 1 |
author | Révész, Pál |
author_facet | Révész, Pál |
author_role | aut |
author_sort | Révész, Pál |
author_variant | p r pr |
building | Verbundindex |
bvnumber | BV010459279 |
classification_rvk | SK 820 SK 840 |
classification_tum | MAT 605f |
ctrlnum | (OCoLC)832650824 (DE-599)BVBBV010459279 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01563nam a2200385 cb4500</leader><controlfield tag="001">BV010459279</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20020826 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">951031s1994 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810217846</subfield><subfield code="9">981-02-1784-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)832650824</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010459279</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 605f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Révész, Pál</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Random walks of infinitely many particles</subfield><subfield code="c">Pál Révész</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 191 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced series on statistical science & applied probability</subfield><subfield code="v">1</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Irrfahrtsproblem</subfield><subfield code="0">(DE-588)4162442-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vielteilchensystem</subfield><subfield code="0">(DE-588)4063491-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vielteilchensystem</subfield><subfield code="0">(DE-588)4063491-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Irrfahrtsproblem</subfield><subfield code="0">(DE-588)4162442-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced series on statistical science & applied probability</subfield><subfield code="v">1</subfield><subfield code="w">(DE-604)BV011932321</subfield><subfield code="9">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006968328&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006968328</subfield></datafield></record></collection> |
id | DE-604.BV010459279 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:52:51Z |
institution | BVB |
isbn | 9810217846 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006968328 |
oclc_num | 832650824 |
open_access_boolean | |
owner | DE-12 DE-824 DE-91G DE-BY-TUM DE-20 DE-703 DE-19 DE-BY-UBM |
owner_facet | DE-12 DE-824 DE-91G DE-BY-TUM DE-20 DE-703 DE-19 DE-BY-UBM |
physical | XV, 191 S. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | World Scientific |
record_format | marc |
series | Advanced series on statistical science & applied probability |
series2 | Advanced series on statistical science & applied probability |
spelling | Révész, Pál Verfasser aut Random walks of infinitely many particles Pál Révész Singapore [u.a.] World Scientific 1994 XV, 191 S. txt rdacontent n rdamedia nc rdacarrier Advanced series on statistical science & applied probability 1 Irrfahrtsproblem (DE-588)4162442-7 gnd rswk-swf Vielteilchensystem (DE-588)4063491-7 gnd rswk-swf Vielteilchensystem (DE-588)4063491-7 s Irrfahrtsproblem (DE-588)4162442-7 s DE-604 Advanced series on statistical science & applied probability 1 (DE-604)BV011932321 1 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006968328&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Révész, Pál Random walks of infinitely many particles Advanced series on statistical science & applied probability Irrfahrtsproblem (DE-588)4162442-7 gnd Vielteilchensystem (DE-588)4063491-7 gnd |
subject_GND | (DE-588)4162442-7 (DE-588)4063491-7 |
title | Random walks of infinitely many particles |
title_auth | Random walks of infinitely many particles |
title_exact_search | Random walks of infinitely many particles |
title_full | Random walks of infinitely many particles Pál Révész |
title_fullStr | Random walks of infinitely many particles Pál Révész |
title_full_unstemmed | Random walks of infinitely many particles Pál Révész |
title_short | Random walks of infinitely many particles |
title_sort | random walks of infinitely many particles |
topic | Irrfahrtsproblem (DE-588)4162442-7 gnd Vielteilchensystem (DE-588)4063491-7 gnd |
topic_facet | Irrfahrtsproblem Vielteilchensystem |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006968328&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV011932321 |
work_keys_str_mv | AT reveszpal randomwalksofinfinitelymanyparticles |