Rippling, a heuristic for guiding inductive proofs:
Abstract: "We describe rippling: a tactic for the heuristic control of the key part of proofs by mathematical induction. This tactic significantly reduces the search for a proof of a wide variety of inductive theorems. We first present a basic version of rippling, followed by various extensions...
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Edinburgh
1991
|
Schriftenreihe: | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper
567 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We describe rippling: a tactic for the heuristic control of the key part of proofs by mathematical induction. This tactic significantly reduces the search for a proof of a wide variety of inductive theorems. We first present a basic version of rippling, followed by various extensions which are necessary to capture larger classes of inductive proofs. Finally, we present a generalised form of rippling which embodies these extensions as special cases. We prove that generalised rippling always terminates, and we discuss the implementation of the tactic and its relation with other inductive proof search heuristics." |
Beschreibung: | 50 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010459085 | ||
003 | DE-604 | ||
005 | 19961217 | ||
007 | t | ||
008 | 951031s1991 |||| 00||| engod | ||
035 | |a (OCoLC)1069166558 | ||
035 | |a (DE-599)BVBBV010459085 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
084 | |a DAT 706f |2 stub | ||
245 | 1 | 0 | |a Rippling, a heuristic for guiding inductive proofs |c Alan Bundy ... |
264 | 1 | |a Edinburgh |c 1991 | |
300 | |a 50 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |v 567 | |
520 | 3 | |a Abstract: "We describe rippling: a tactic for the heuristic control of the key part of proofs by mathematical induction. This tactic significantly reduces the search for a proof of a wide variety of inductive theorems. We first present a basic version of rippling, followed by various extensions which are necessary to capture larger classes of inductive proofs. Finally, we present a generalised form of rippling which embodies these extensions as special cases. We prove that generalised rippling always terminates, and we discuss the implementation of the tactic and its relation with other inductive proof search heuristics." | |
650 | 7 | |a Computer software |2 sigle | |
650 | 7 | |a Mathematics |2 sigle | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Automatic theorem proving | |
700 | 1 | |a Bundy, Alan |e Sonstige |4 oth | |
810 | 2 | |a Department of Artificial Intelligence: DAI research paper |t University <Edinburgh> |v 567 |w (DE-604)BV010450646 |9 567 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-006968164 |
Datensatz im Suchindex
_version_ | 1812974139678392320 |
---|---|
adam_text | |
any_adam_object | |
building | Verbundindex |
bvnumber | BV010459085 |
classification_tum | DAT 706f |
ctrlnum | (OCoLC)1069166558 (DE-599)BVBBV010459085 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV010459085</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19961217</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">951031s1991 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1069166558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010459085</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 706f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rippling, a heuristic for guiding inductive proofs</subfield><subfield code="c">Alan Bundy ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Edinburgh</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">50 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">University <Edinburgh> / Department of Artificial Intelligence: DAI research paper</subfield><subfield code="v">567</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We describe rippling: a tactic for the heuristic control of the key part of proofs by mathematical induction. This tactic significantly reduces the search for a proof of a wide variety of inductive theorems. We first present a basic version of rippling, followed by various extensions which are necessary to capture larger classes of inductive proofs. Finally, we present a generalised form of rippling which embodies these extensions as special cases. We prove that generalised rippling always terminates, and we discuss the implementation of the tactic and its relation with other inductive proof search heuristics."</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer software</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic theorem proving</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bundy, Alan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Artificial Intelligence: DAI research paper</subfield><subfield code="t">University <Edinburgh></subfield><subfield code="v">567</subfield><subfield code="w">(DE-604)BV010450646</subfield><subfield code="9">567</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006968164</subfield></datafield></record></collection> |
id | DE-604.BV010459085 |
illustrated | Not Illustrated |
indexdate | 2024-10-15T10:07:52Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006968164 |
oclc_num | 1069166558 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 50 S. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
record_format | marc |
series2 | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |
spelling | Rippling, a heuristic for guiding inductive proofs Alan Bundy ... Edinburgh 1991 50 S. txt rdacontent n rdamedia nc rdacarrier University <Edinburgh> / Department of Artificial Intelligence: DAI research paper 567 Abstract: "We describe rippling: a tactic for the heuristic control of the key part of proofs by mathematical induction. This tactic significantly reduces the search for a proof of a wide variety of inductive theorems. We first present a basic version of rippling, followed by various extensions which are necessary to capture larger classes of inductive proofs. Finally, we present a generalised form of rippling which embodies these extensions as special cases. We prove that generalised rippling always terminates, and we discuss the implementation of the tactic and its relation with other inductive proof search heuristics." Computer software sigle Mathematics sigle Mathematik Automatic theorem proving Bundy, Alan Sonstige oth Department of Artificial Intelligence: DAI research paper University <Edinburgh> 567 (DE-604)BV010450646 567 |
spellingShingle | Rippling, a heuristic for guiding inductive proofs Computer software sigle Mathematics sigle Mathematik Automatic theorem proving |
title | Rippling, a heuristic for guiding inductive proofs |
title_auth | Rippling, a heuristic for guiding inductive proofs |
title_exact_search | Rippling, a heuristic for guiding inductive proofs |
title_full | Rippling, a heuristic for guiding inductive proofs Alan Bundy ... |
title_fullStr | Rippling, a heuristic for guiding inductive proofs Alan Bundy ... |
title_full_unstemmed | Rippling, a heuristic for guiding inductive proofs Alan Bundy ... |
title_short | Rippling, a heuristic for guiding inductive proofs |
title_sort | rippling a heuristic for guiding inductive proofs |
topic | Computer software sigle Mathematics sigle Mathematik Automatic theorem proving |
topic_facet | Computer software Mathematics Mathematik Automatic theorem proving |
volume_link | (DE-604)BV010450646 |
work_keys_str_mv | AT bundyalan ripplingaheuristicforguidinginductiveproofs |