Computing with uncertainty, intervals versus probabilities:
Abstract: "We compare two well known methods of computing with uncertain quantities as used for geometric reasoning in robotics and computer vision. One method represents errors with intervals and manipulates them using techniques from interval arithmetic and network relaxation. The other metho...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Edinburgh
1991
|
Schriftenreihe: | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper
542 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We compare two well known methods of computing with uncertain quantities as used for geometric reasoning in robotics and computer vision. One method represents errors with intervals and manipulates them using techniques from interval arithmetic and network relaxation. The other method uses normal probability distributions for representation and manipulates them with techniques from statistical estimation theory. We find that the method based on probabilities is better in terms of both speed and accuracy." |
Beschreibung: | 8 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010453974 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 951030s1991 |||| 00||| engod | ||
035 | |a (OCoLC)25783786 | ||
035 | |a (DE-599)BVBBV010453974 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Orr, Mark J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Computing with uncertainty, intervals versus probabilities |c Mark J. L. Orr ; Robert B. Fisher ; John Hallam |
264 | 1 | |a Edinburgh |c 1991 | |
300 | |a 8 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |v 542 | |
520 | 3 | |a Abstract: "We compare two well known methods of computing with uncertain quantities as used for geometric reasoning in robotics and computer vision. One method represents errors with intervals and manipulates them using techniques from interval arithmetic and network relaxation. The other method uses normal probability distributions for representation and manipulates them with techniques from statistical estimation theory. We find that the method based on probabilities is better in terms of both speed and accuracy." | |
650 | 7 | |a Pattern recognition, image processing and remote sensing |2 sigle | |
650 | 7 | |a Robotics and its application |2 sigle | |
650 | 4 | |a Computer vision | |
650 | 4 | |a Uncertainty (Information theory) | |
700 | 1 | |a Fisher, Robert B. |e Verfasser |4 aut | |
700 | 1 | |a Hallam, John |e Verfasser |4 aut | |
810 | 2 | |a Department of Artificial Intelligence: DAI research paper |t University <Edinburgh> |v 542 |w (DE-604)BV010450646 |9 542 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006966671 |
Datensatz im Suchindex
_version_ | 1804124887618420736 |
---|---|
any_adam_object | |
author | Orr, Mark J. Fisher, Robert B. Hallam, John |
author_facet | Orr, Mark J. Fisher, Robert B. Hallam, John |
author_role | aut aut aut |
author_sort | Orr, Mark J. |
author_variant | m j o mj mjo r b f rb rbf j h jh |
building | Verbundindex |
bvnumber | BV010453974 |
ctrlnum | (OCoLC)25783786 (DE-599)BVBBV010453974 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01760nam a2200349 cb4500</leader><controlfield tag="001">BV010453974</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">951030s1991 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)25783786</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010453974</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Orr, Mark J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computing with uncertainty, intervals versus probabilities</subfield><subfield code="c">Mark J. L. Orr ; Robert B. Fisher ; John Hallam</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Edinburgh</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">University <Edinburgh> / Department of Artificial Intelligence: DAI research paper</subfield><subfield code="v">542</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We compare two well known methods of computing with uncertain quantities as used for geometric reasoning in robotics and computer vision. One method represents errors with intervals and manipulates them using techniques from interval arithmetic and network relaxation. The other method uses normal probability distributions for representation and manipulates them with techniques from statistical estimation theory. We find that the method based on probabilities is better in terms of both speed and accuracy."</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pattern recognition, image processing and remote sensing</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Robotics and its application</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty (Information theory)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fisher, Robert B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hallam, John</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Artificial Intelligence: DAI research paper</subfield><subfield code="t">University <Edinburgh></subfield><subfield code="v">542</subfield><subfield code="w">(DE-604)BV010450646</subfield><subfield code="9">542</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006966671</subfield></datafield></record></collection> |
id | DE-604.BV010453974 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:52:48Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006966671 |
oclc_num | 25783786 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 8 S. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
record_format | marc |
series2 | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |
spelling | Orr, Mark J. Verfasser aut Computing with uncertainty, intervals versus probabilities Mark J. L. Orr ; Robert B. Fisher ; John Hallam Edinburgh 1991 8 S. txt rdacontent n rdamedia nc rdacarrier University <Edinburgh> / Department of Artificial Intelligence: DAI research paper 542 Abstract: "We compare two well known methods of computing with uncertain quantities as used for geometric reasoning in robotics and computer vision. One method represents errors with intervals and manipulates them using techniques from interval arithmetic and network relaxation. The other method uses normal probability distributions for representation and manipulates them with techniques from statistical estimation theory. We find that the method based on probabilities is better in terms of both speed and accuracy." Pattern recognition, image processing and remote sensing sigle Robotics and its application sigle Computer vision Uncertainty (Information theory) Fisher, Robert B. Verfasser aut Hallam, John Verfasser aut Department of Artificial Intelligence: DAI research paper University <Edinburgh> 542 (DE-604)BV010450646 542 |
spellingShingle | Orr, Mark J. Fisher, Robert B. Hallam, John Computing with uncertainty, intervals versus probabilities Pattern recognition, image processing and remote sensing sigle Robotics and its application sigle Computer vision Uncertainty (Information theory) |
title | Computing with uncertainty, intervals versus probabilities |
title_auth | Computing with uncertainty, intervals versus probabilities |
title_exact_search | Computing with uncertainty, intervals versus probabilities |
title_full | Computing with uncertainty, intervals versus probabilities Mark J. L. Orr ; Robert B. Fisher ; John Hallam |
title_fullStr | Computing with uncertainty, intervals versus probabilities Mark J. L. Orr ; Robert B. Fisher ; John Hallam |
title_full_unstemmed | Computing with uncertainty, intervals versus probabilities Mark J. L. Orr ; Robert B. Fisher ; John Hallam |
title_short | Computing with uncertainty, intervals versus probabilities |
title_sort | computing with uncertainty intervals versus probabilities |
topic | Pattern recognition, image processing and remote sensing sigle Robotics and its application sigle Computer vision Uncertainty (Information theory) |
topic_facet | Pattern recognition, image processing and remote sensing Robotics and its application Computer vision Uncertainty (Information theory) |
volume_link | (DE-604)BV010450646 |
work_keys_str_mv | AT orrmarkj computingwithuncertaintyintervalsversusprobabilities AT fisherrobertb computingwithuncertaintyintervalsversusprobabilities AT hallamjohn computingwithuncertaintyintervalsversusprobabilities |