Recognition with second-order topographic surface features:
Abstract: "We previously [3] defined eight second-order volumetric primitives and then showed [4] that they can be extracted from range data. This paper shows that by using them model matching is more efficient, because the shape vocabulary reduces the combinatorial generation of hypotheses. Wi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Edinburgh
1991
|
Schriftenreihe: | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper
541 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We previously [3] defined eight second-order volumetric primitives and then showed [4] that they can be extracted from range data. This paper shows that by using them model matching is more efficient, because the shape vocabulary reduces the combinatorial generation of hypotheses. With the model-to-data correspondences, accurate three dimensional model location is possible." |
Beschreibung: | [4] S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010453934 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 951030s1991 |||| 00||| engod | ||
035 | |a (OCoLC)25783823 | ||
035 | |a (DE-599)BVBBV010453934 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Fisher, Robert B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Recognition with second-order topographic surface features |
264 | 1 | |a Edinburgh |c 1991 | |
300 | |a [4] S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |v 541 | |
520 | 3 | |a Abstract: "We previously [3] defined eight second-order volumetric primitives and then showed [4] that they can be extracted from range data. This paper shows that by using them model matching is more efficient, because the shape vocabulary reduces the combinatorial generation of hypotheses. With the model-to-data correspondences, accurate three dimensional model location is possible." | |
650 | 7 | |a Computer aided design (CAD) |2 sigle | |
650 | 7 | |a Pattern recognition, image processing and remote sensing |2 sigle | |
650 | 4 | |a Computer simulation | |
650 | 4 | |a Computer vision | |
650 | 4 | |a Volumetric analysis | |
810 | 2 | |a Department of Artificial Intelligence: DAI research paper |t University <Edinburgh> |v 541 |w (DE-604)BV010450646 |9 541 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006966637 |
Datensatz im Suchindex
_version_ | 1804124887558651904 |
---|---|
any_adam_object | |
author | Fisher, Robert B. |
author_facet | Fisher, Robert B. |
author_role | aut |
author_sort | Fisher, Robert B. |
author_variant | r b f rb rbf |
building | Verbundindex |
bvnumber | BV010453934 |
ctrlnum | (OCoLC)25783823 (DE-599)BVBBV010453934 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01512nam a2200337 cb4500</leader><controlfield tag="001">BV010453934</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">951030s1991 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)25783823</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010453934</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fisher, Robert B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recognition with second-order topographic surface features</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Edinburgh</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">[4] S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">University <Edinburgh> / Department of Artificial Intelligence: DAI research paper</subfield><subfield code="v">541</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We previously [3] defined eight second-order volumetric primitives and then showed [4] that they can be extracted from range data. This paper shows that by using them model matching is more efficient, because the shape vocabulary reduces the combinatorial generation of hypotheses. With the model-to-data correspondences, accurate three dimensional model location is possible."</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer aided design (CAD)</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pattern recognition, image processing and remote sensing</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volumetric analysis</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Artificial Intelligence: DAI research paper</subfield><subfield code="t">University <Edinburgh></subfield><subfield code="v">541</subfield><subfield code="w">(DE-604)BV010450646</subfield><subfield code="9">541</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006966637</subfield></datafield></record></collection> |
id | DE-604.BV010453934 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:52:48Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006966637 |
oclc_num | 25783823 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | [4] S. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
record_format | marc |
series2 | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |
spelling | Fisher, Robert B. Verfasser aut Recognition with second-order topographic surface features Edinburgh 1991 [4] S. txt rdacontent n rdamedia nc rdacarrier University <Edinburgh> / Department of Artificial Intelligence: DAI research paper 541 Abstract: "We previously [3] defined eight second-order volumetric primitives and then showed [4] that they can be extracted from range data. This paper shows that by using them model matching is more efficient, because the shape vocabulary reduces the combinatorial generation of hypotheses. With the model-to-data correspondences, accurate three dimensional model location is possible." Computer aided design (CAD) sigle Pattern recognition, image processing and remote sensing sigle Computer simulation Computer vision Volumetric analysis Department of Artificial Intelligence: DAI research paper University <Edinburgh> 541 (DE-604)BV010450646 541 |
spellingShingle | Fisher, Robert B. Recognition with second-order topographic surface features Computer aided design (CAD) sigle Pattern recognition, image processing and remote sensing sigle Computer simulation Computer vision Volumetric analysis |
title | Recognition with second-order topographic surface features |
title_auth | Recognition with second-order topographic surface features |
title_exact_search | Recognition with second-order topographic surface features |
title_full | Recognition with second-order topographic surface features |
title_fullStr | Recognition with second-order topographic surface features |
title_full_unstemmed | Recognition with second-order topographic surface features |
title_short | Recognition with second-order topographic surface features |
title_sort | recognition with second order topographic surface features |
topic | Computer aided design (CAD) sigle Pattern recognition, image processing and remote sensing sigle Computer simulation Computer vision Volumetric analysis |
topic_facet | Computer aided design (CAD) Pattern recognition, image processing and remote sensing Computer simulation Computer vision Volumetric analysis |
volume_link | (DE-604)BV010450646 |
work_keys_str_mv | AT fisherrobertb recognitionwithsecondordertopographicsurfacefeatures |