Convex volumetric primitives from slices:
Abstract: "We present a system for recovering 3-D convex subparts and their connectivity from parallel slices of a range image. We call this the volumetric segmentation problem. Instead of fitting a set of 3-D models to the data, we detect regularities (transversality) in the data in order to f...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Edinburgh
1990
|
Schriftenreihe: | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper
477 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We present a system for recovering 3-D convex subparts and their connectivity from parallel slices of a range image. We call this the volumetric segmentation problem. Instead of fitting a set of 3-D models to the data, we detect regularities (transversality) in the data in order to find plausible joints between subparts. This defines implicitly the class of objects which can be successfully processed. The system can recover strongly bent subparts even though it analyses only parallel cross-sections. Some experimental results are discussed and evaluated according to two criteria, stability and believeability." |
Beschreibung: | [7] S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010452191 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 951027s1990 |||| 00||| engod | ||
035 | |a (OCoLC)23725322 | ||
035 | |a (DE-599)BVBBV010452191 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Trucco, Emanuele |e Verfasser |4 aut | |
245 | 1 | 0 | |a Convex volumetric primitives from slices |
264 | 1 | |a Edinburgh |c 1990 | |
300 | |a [7] S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |v 477 | |
520 | 3 | |a Abstract: "We present a system for recovering 3-D convex subparts and their connectivity from parallel slices of a range image. We call this the volumetric segmentation problem. Instead of fitting a set of 3-D models to the data, we detect regularities (transversality) in the data in order to find plausible joints between subparts. This defines implicitly the class of objects which can be successfully processed. The system can recover strongly bent subparts even though it analyses only parallel cross-sections. Some experimental results are discussed and evaluated according to two criteria, stability and believeability." | |
650 | 7 | |a Bionics and artificial intelligence |2 sigle | |
650 | 7 | |a Pattern recognition, image processing and remote sensing |2 sigle | |
650 | 4 | |a Computer vision | |
650 | 4 | |a Image processing | |
810 | 2 | |a Department of Artificial Intelligence: DAI research paper |t University <Edinburgh> |v 477 |w (DE-604)BV010450646 |9 477 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006965136 |
Datensatz im Suchindex
_version_ | 1804124885318893568 |
---|---|
any_adam_object | |
author | Trucco, Emanuele |
author_facet | Trucco, Emanuele |
author_role | aut |
author_sort | Trucco, Emanuele |
author_variant | e t et |
building | Verbundindex |
bvnumber | BV010452191 |
ctrlnum | (OCoLC)23725322 (DE-599)BVBBV010452191 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01701nam a2200325 cb4500</leader><controlfield tag="001">BV010452191</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">951027s1990 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)23725322</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010452191</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Trucco, Emanuele</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convex volumetric primitives from slices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Edinburgh</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">[7] S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">University <Edinburgh> / Department of Artificial Intelligence: DAI research paper</subfield><subfield code="v">477</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We present a system for recovering 3-D convex subparts and their connectivity from parallel slices of a range image. We call this the volumetric segmentation problem. Instead of fitting a set of 3-D models to the data, we detect regularities (transversality) in the data in order to find plausible joints between subparts. This defines implicitly the class of objects which can be successfully processed. The system can recover strongly bent subparts even though it analyses only parallel cross-sections. Some experimental results are discussed and evaluated according to two criteria, stability and believeability."</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bionics and artificial intelligence</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pattern recognition, image processing and remote sensing</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image processing</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Artificial Intelligence: DAI research paper</subfield><subfield code="t">University <Edinburgh></subfield><subfield code="v">477</subfield><subfield code="w">(DE-604)BV010450646</subfield><subfield code="9">477</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006965136</subfield></datafield></record></collection> |
id | DE-604.BV010452191 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:52:46Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006965136 |
oclc_num | 23725322 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | [7] S. |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
record_format | marc |
series2 | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |
spelling | Trucco, Emanuele Verfasser aut Convex volumetric primitives from slices Edinburgh 1990 [7] S. txt rdacontent n rdamedia nc rdacarrier University <Edinburgh> / Department of Artificial Intelligence: DAI research paper 477 Abstract: "We present a system for recovering 3-D convex subparts and their connectivity from parallel slices of a range image. We call this the volumetric segmentation problem. Instead of fitting a set of 3-D models to the data, we detect regularities (transversality) in the data in order to find plausible joints between subparts. This defines implicitly the class of objects which can be successfully processed. The system can recover strongly bent subparts even though it analyses only parallel cross-sections. Some experimental results are discussed and evaluated according to two criteria, stability and believeability." Bionics and artificial intelligence sigle Pattern recognition, image processing and remote sensing sigle Computer vision Image processing Department of Artificial Intelligence: DAI research paper University <Edinburgh> 477 (DE-604)BV010450646 477 |
spellingShingle | Trucco, Emanuele Convex volumetric primitives from slices Bionics and artificial intelligence sigle Pattern recognition, image processing and remote sensing sigle Computer vision Image processing |
title | Convex volumetric primitives from slices |
title_auth | Convex volumetric primitives from slices |
title_exact_search | Convex volumetric primitives from slices |
title_full | Convex volumetric primitives from slices |
title_fullStr | Convex volumetric primitives from slices |
title_full_unstemmed | Convex volumetric primitives from slices |
title_short | Convex volumetric primitives from slices |
title_sort | convex volumetric primitives from slices |
topic | Bionics and artificial intelligence sigle Pattern recognition, image processing and remote sensing sigle Computer vision Image processing |
topic_facet | Bionics and artificial intelligence Pattern recognition, image processing and remote sensing Computer vision Image processing |
volume_link | (DE-604)BV010450646 |
work_keys_str_mv | AT truccoemanuele convexvolumetricprimitivesfromslices |