Markov random field modeling in computer vision:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Tokyo u.a.
Springer
1995
|
Schriftenreihe: | Computer science workbench
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 264 S. Ill., graph. Darst. |
ISBN: | 3540701451 0387701451 4431701451 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV010445112 | ||
003 | DE-604 | ||
005 | 19960318 | ||
007 | t | ||
008 | 951016s1995 gw ad|| |||| 00||| ger d | ||
016 | 7 | |a 945788118 |2 DE-101 | |
020 | |a 3540701451 |c (Berlin ...) Pp. : DM 168.00 |9 3-540-70145-1 | ||
020 | |a 0387701451 |c (New York ...) Pp. |9 0-387-70145-1 | ||
020 | |a 4431701451 |c (Tokyo ...) Pp. |9 4-431-70145-1 | ||
035 | |a (OCoLC)246786984 | ||
035 | |a (DE-599)BVBBV010445112 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-739 |a DE-29T |a DE-83 | ||
084 | |a ST 330 |0 (DE-625)143663: |2 rvk | ||
100 | 1 | |a Li, S. Z. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Markov random field modeling in computer vision |c S. Z. Li |
264 | 1 | |a Tokyo u.a. |b Springer |c 1995 | |
300 | |a XVI, 264 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Computer science workbench | |
650 | 0 | 7 | |a Markov-Prozess |0 (DE-588)4134948-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildverarbeitung |0 (DE-588)4006684-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Markov-Zufallsfeld |0 (DE-588)4168933-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zufälliges Feld |0 (DE-588)4191094-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |D s |
689 | 0 | 1 | |a Zufälliges Feld |0 (DE-588)4191094-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Markov-Zufallsfeld |0 (DE-588)4168933-1 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |D s |
689 | 2 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Markov-Prozess |0 (DE-588)4134948-9 |D s |
689 | 3 | |8 1\p |5 DE-604 | |
689 | 4 | 0 | |a Bildverarbeitung |0 (DE-588)4006684-8 |D s |
689 | 4 | |8 2\p |5 DE-604 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006961658&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-006961658 |
Datensatz im Suchindex
_version_ | 1807682215386021888 |
---|---|
adam_text |
CONTENTS
FOREWORD
BY
ANIL
K.
JAIN
IX
PREFACE
XI
1
INTRODUCTION
1
1.1
VISUAL
LABELING
.
3
1.1.1
SITES
AND
LABELS
.
3
1.1.2
THE
LABELING
PROBLEM
.
4
1.1.3
LABELING
PROBLEMS
IN
VISION
.
6
1.1.4
LABELING
WITH
CONTEXTUAL
CONSTRAINTS
.
7
1.2
MARKOV
RANDOM
FIELDS
AND
GIBBS
DISTRIBUTIONS
.
8
1.2.1
NEIGHBORHOOD
SYSTEM
AND
CLIQUES
.
8
1.2.2 MARKOV
RANDOM
FIELDS
.
11
1.2.3
GIBBS
RANDOM
FIELDS
.
12
1.2.4
MARKOV-GIBBS
EQUIVALENCE
.
14
1.2.5
NORMALIZED
AND
CANONICAL
FORMS
.
16
1.3
USEFUL
MRF
MODELS
.
17
1.3.1
AUTO-MODELS
.
17
1.3.2
MULTI-LEVEL
LOGISTIC
MODEL
.
19
1.3.3
THE
SMOOTHNESS
PRIOR
.
21
1.3.4
HIERARCHICAL
GRF
MODEL
.
23
1.4
OPTIMIZATION-BASED
VISION
.
24
1.4.1
RESEARCH
ISSUES
.
25
1.4.2
ROLE
OF
ENERGY
FUNCTIONS
.
26
1.4.3
FORMULATION
OF
OBJECTIVE
FUNCTIONS
.
27
1.4.4
OPTIMALITY
CRITERIA
.
29
1.5
BAYES
LABELING
OF
MRFS
.
30
1.5.1
BAYES
ESTIMATION
.
31
1.5.2
MAP-MRF
LABELING
.
32
1.5.3
REGULARIZATION
.
33
1.5.4
SUMMARY
OF
MAP-MRF
APPROACH
.
34
XIV
CONTENTS
2
LOW
LEVEL
MRF
MODELS
37
2.1
OBSERVATION
MODELS
.
38
2.2
IMAGE
RESTORATION
AND
RECONSTRUCTION
.
39
2.2.1
MRF
PRIORS
FOR
IMAGE
SURFACES
.
39
2.2.2
PIECEWISE
CONSTANT
RESTORATION
.
42
2.2.3
PIECEWISE
CONTINUOUS
RESTORATION
.
43
2.2.4
SURFACE
RECONSTRUCTION
.
46
2.3
EDGE
DETECTION
.
48
2.3.1
EDGE
LABELING
USING
LINE
PROCESS
.
49
2.3.2
FORBIDDEN
EDGE
PATTERNS
.
51
2.4
TEXTURE
SYNTHESIS
AND
ANALYSIS
.
52
2.4.1
MRF
TEXTURE
MODELING
.
53
2.4.2
TEXTURE
SEGMENTATION
.
56
2.5
OPTICAL
FLOW
.
59
2.5.1
VARIATIONAL
APPROACH
.
59
2.5.2
FLOW
DISCONTINUITIES
.
61
3
DISCONTINUITIES
IN
MRFS
63
3.1
SMOOTHNESS,
REGULARIZATION
AND
DISCONTINUITIES
.
64
3.1.1
REGULARIZATION
AND
DISCONTINUITIES
.
65
3.1.2
OTHER
REGULARIZATION
MODELS
.
69
3.2
THE
DISCONTINUITY
ADAPTIVE
MRF
MODEL
.
69
3.2.1
DEFINING
THE
DA
MODEL
.
70
3.2.2
RELATIONS
WITH
PREVIOUS
MODELS
.
74
3.2.3
DISCRETE
DATA
AND
2D
CASES
.
76
3.2.4
SOLUTION
STABILITY
.
77
3.3
COMPUTATION
OF
DA
SOLUTIONS
.
78
3.3.1
SOLVING
THE
EULER
EQUATION
.
78
3.3.2
EXPERIMENTAL
RESULTS
.
80
3.4
CONCLUSION
.
81
4
DISCONTINUITY-ADAPTIVITY
MODEL
AND
ROBUST
ESTIMATION
83
4.1
THE
DA
PRIOR
AND
ROBUST
STATISTICS
.
84
4.1.1
ROBUST
M
ESTIMATOR
.
85
4.1.2
PROBLEMS
WITH
M
ESTIMATOR
.
87
4.1.3
REDEFINITION
OF
M
ESTIMATOR
.
88
4.1.4
AM
ESTIMATOR
.
89
4.1.5
CONVEX
DA
AND
M-ESTIMATION
MODELS
.
90
4.2
EXPERIMENTAL
COMPARISON
.
92
4.2.1
LOCATION
ESTIMATION
.
92
4.2.2
ROTATION
ANGLE
ESTIMATION
.
96
CONTENTS
XV
5
HIGH
LEVEL
MRF
MODELS
101
5.1
MATCHING
UNDER
RELATIONAL
CONSTRAINTS
.
101
5.1.1
RELATIONAL
STRUCTURE
REPRESENTATION
.
102
5.1.2
WORK
IN
RELATIONAL
MATCHING
.
106
5.2
MRF-BASED
MATCHING
.
108
5.2.1
POSTERIOR
PROBABILITY
AND
ENERGY
.
109
5.2.2
MATCHING
TO
MULTIPLE
OBJECTS
.
111
5.2.3
EXPERIMENTS
.
113
5.2.4
EXTENSIONS
.
122
5.3
POSE
COMPUTATION
.
124
5.3.1
POSE
CLUSTERING
AND
ESTIMATION
.
124
5.3.2
SIMULTANEOUS
MATCHING
AND
POSE
.
127
5.3.3
DISCUSSION
.
130
6
MRF
PARAMETER
ESTIMATION
131
6.1
SUPERVISED
ESTIMATION
WITH
LABELED
DATA
.
133
6.1.1
MAXIMUM
LIKELIHOOD
.
133
6.1.2
PSEUDO-LIKELIHOOD
.
135
6.1.3
CODING
METHOD
.
136
6.1.4
MEAN
FIELD
APPROXIMATIONS
.
137
6.1.5
LEAST
SQUARES
FIT
.
139
6.2
UNSUPERVISED
ESTIMATION
WITH
UNLABELED
DATA
.
143
6.2.1
SIMULTANEOUS
RESTORATION
AND
ESTIMATION
.
144
6.2.2
SIMULTANEOUS
SEGMENTATION
AND
ESTIMATION
.
145
6.2.3
EXPECTATION-MAXIMIZATION
.
150
6.2.4
CROSS
VALIDATION
.
152
6.3
FUERTHER
ISSUES
.
153
6.3.1
ESTIMATING
THE
NUMBER
OF
MRFS
.
153
6.3.2
REDUCTION
OF
NONZERO
PARAMETERS
.
155
7
PARAMETER
ESTIMATION
IN
OPTIMAL
OBJECT
RECOGNITION
157
7.1
MOTIVATION
.
157
7.2
THEORY
OF
PARAMETER
ESTIMATION
FOR
RECOGNITION
.
159
7.2.1
OPTIMIZATION-BASED
OBJECT
RECOGNITION
.
160
7.2.2
CRITERIA
FOR
PARAMETER
ESTIMATION
.
161
7.2.3
LINEAR
CLASSIFICATION
FUNCTION
.
164
7.2.4
A
NON-PARAMETRIC
LEARNING
ALGORITHM
.
167
7.2.5
REDUCING
SEARCH
SPACE
.
169
7.3
APPLICATION
IN
MRF
OBJECT
RECOGNITION
.
170
7.3.1
POSTERIOR
ENERGY
.
170
7.3.2
ENERGY
IN
LINEAR
FORM
.
171
7.3.3
HOW
MINIMAL
CONFIGURATION
CHANGES
.
172
7.3.4
PARAMETRIC
ESTIMATION
UNDER
GAUSSIAN
NOISE
.
173
7.4
EXPERIMENTS
.
176
7.4.1
RECOGNITION
OF
LINE
PATTERNS
.
176
XVI
CONTENTS
7.4.2
RECOGNITION
OF
CURVED
OBJECTS
.
181
7.5
CONCLUSION
.
182
8
MINIMIZATION
-
LOCAL
METHODS
185
8.1
CLASSICAL
MINIMIZATION
WITH
CONTINUOUS
LABELS
.
187
8.2
MINIMIZATION
WITH
DISCRETE
LABELS
.
189
8.2.1
ITERATED
CONDITIONAL
MODES
.
189
8.2.2
RELAXATION
LABELING
.
190
8.2.3
HIGHEST
CONFIDENCE
FIRST
.
195
8.2.4
DYNAMIC
PROGRAMMING
.
197
8.3
CONSTRAINED
MINIMIZATION
.
199
8.3.1
PENALTY
FUNCTIONS
.
200
8.3.2
LAGRANGE
MULTIPLIERS
.
201
8.3.3
HOPFIELD
METHOD
.
202
8.3.4
RL
USING
LAGRANGE-HOPFIELD
METHOD
.
204
9
MINIMIZATION
-
GLOBAL
METHODS
207
9.1
SIMULATED
ANNEALING
.
208
9.1.1
RANDOM
SAMPLING
ALGORITHMS
.
209
9.1.2
ANNEALING
.
210
9.2
MEAN
FIELD
ANNEALING
.
211
9.3
GRADUATED
NON-CONVEXITY
.
214
9.3.1
ANNEALING
LABELING
FOR
MAP-MRF
MATCHING
.
219
9.4 GENETIC
ALGORITHMS
.
220
9.5
EXPERIMENTAL
COMPARISON
.
222
9.6
ACCELERATING
COMPUTATION
.
228
9.6.1
MULTI-RESOLUTION
METHODS
.
228
9.6.2
USE
OF
HEURISTICS
.
229
9.7
MODEL
DEBUGGING
.
230
REFERENCES
231
LIST
OF
NOTATION
259
INDEX
261 |
any_adam_object | 1 |
author | Li, S. Z. |
author_facet | Li, S. Z. |
author_role | aut |
author_sort | Li, S. Z. |
author_variant | s z l sz szl |
building | Verbundindex |
bvnumber | BV010445112 |
classification_rvk | ST 330 |
ctrlnum | (OCoLC)246786984 (DE-599)BVBBV010445112 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV010445112</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19960318</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">951016s1995 gw ad|| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">945788118</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540701451</subfield><subfield code="c">(Berlin ...) Pp. : DM 168.00</subfield><subfield code="9">3-540-70145-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387701451</subfield><subfield code="c">(New York ...) Pp.</subfield><subfield code="9">0-387-70145-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">4431701451</subfield><subfield code="c">(Tokyo ...) Pp.</subfield><subfield code="9">4-431-70145-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246786984</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010445112</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, S. Z.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Markov random field modeling in computer vision</subfield><subfield code="c">S. Z. Li</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Tokyo u.a.</subfield><subfield code="b">Springer</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 264 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Computer science workbench</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Zufallsfeld</subfield><subfield code="0">(DE-588)4168933-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zufälliges Feld</subfield><subfield code="0">(DE-588)4191094-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zufälliges Feld</subfield><subfield code="0">(DE-588)4191094-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Markov-Zufallsfeld</subfield><subfield code="0">(DE-588)4168933-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006961658&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006961658</subfield></datafield></record></collection> |
id | DE-604.BV010445112 |
illustrated | Illustrated |
indexdate | 2024-08-18T00:14:59Z |
institution | BVB |
isbn | 3540701451 0387701451 4431701451 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006961658 |
oclc_num | 246786984 |
open_access_boolean | |
owner | DE-739 DE-29T DE-83 |
owner_facet | DE-739 DE-29T DE-83 |
physical | XVI, 264 S. Ill., graph. Darst. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer |
record_format | marc |
series2 | Computer science workbench |
spelling | Li, S. Z. Verfasser aut Markov random field modeling in computer vision S. Z. Li Tokyo u.a. Springer 1995 XVI, 264 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Computer science workbench Markov-Prozess (DE-588)4134948-9 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Bildverarbeitung (DE-588)4006684-8 gnd rswk-swf Markov-Zufallsfeld (DE-588)4168933-1 gnd rswk-swf Zufälliges Feld (DE-588)4191094-1 gnd rswk-swf Maschinelles Sehen (DE-588)4129594-8 gnd rswk-swf Maschinelles Sehen (DE-588)4129594-8 s Zufälliges Feld (DE-588)4191094-1 s DE-604 Markov-Zufallsfeld (DE-588)4168933-1 s Mathematisches Modell (DE-588)4114528-8 s Markov-Prozess (DE-588)4134948-9 s 1\p DE-604 Bildverarbeitung (DE-588)4006684-8 s 2\p DE-604 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006961658&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Li, S. Z. Markov random field modeling in computer vision Markov-Prozess (DE-588)4134948-9 gnd Mathematisches Modell (DE-588)4114528-8 gnd Bildverarbeitung (DE-588)4006684-8 gnd Markov-Zufallsfeld (DE-588)4168933-1 gnd Zufälliges Feld (DE-588)4191094-1 gnd Maschinelles Sehen (DE-588)4129594-8 gnd |
subject_GND | (DE-588)4134948-9 (DE-588)4114528-8 (DE-588)4006684-8 (DE-588)4168933-1 (DE-588)4191094-1 (DE-588)4129594-8 |
title | Markov random field modeling in computer vision |
title_auth | Markov random field modeling in computer vision |
title_exact_search | Markov random field modeling in computer vision |
title_full | Markov random field modeling in computer vision S. Z. Li |
title_fullStr | Markov random field modeling in computer vision S. Z. Li |
title_full_unstemmed | Markov random field modeling in computer vision S. Z. Li |
title_short | Markov random field modeling in computer vision |
title_sort | markov random field modeling in computer vision |
topic | Markov-Prozess (DE-588)4134948-9 gnd Mathematisches Modell (DE-588)4114528-8 gnd Bildverarbeitung (DE-588)4006684-8 gnd Markov-Zufallsfeld (DE-588)4168933-1 gnd Zufälliges Feld (DE-588)4191094-1 gnd Maschinelles Sehen (DE-588)4129594-8 gnd |
topic_facet | Markov-Prozess Mathematisches Modell Bildverarbeitung Markov-Zufallsfeld Zufälliges Feld Maschinelles Sehen |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006961658&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lisz markovrandomfieldmodelingincomputervision |