Natural deduction theorem proving in set theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Edinburgh
1983
|
Schriftenreihe: | University <Edinburgh> / Department of Computer Science: Internal report
142 |
Schlagworte: | |
Beschreibung: | 18 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010434829 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 951019s1983 |||| 00||| engod | ||
035 | |a (OCoLC)29008393 | ||
035 | |a (DE-599)BVBBV010434829 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Schmidt, David A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Natural deduction theorem proving in set theory |c by David Schmidt |
264 | 1 | |a Edinburgh |c 1983 | |
300 | |a 18 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a University <Edinburgh> / Department of Computer Science: Internal report |v 142 | |
650 | 7 | |a Computer software |2 sigle | |
650 | 7 | |a Mathematics |2 sigle | |
650 | 4 | |a Mathematik | |
810 | 2 | |a Department of Computer Science: Internal report |t University <Edinburgh> |v 142 |w (DE-604)BV006185380 |9 142 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006953456 |
Datensatz im Suchindex
_version_ | 1804124867653533696 |
---|---|
any_adam_object | |
author | Schmidt, David A. |
author_facet | Schmidt, David A. |
author_role | aut |
author_sort | Schmidt, David A. |
author_variant | d a s da das |
building | Verbundindex |
bvnumber | BV010434829 |
ctrlnum | (OCoLC)29008393 (DE-599)BVBBV010434829 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00961nam a2200301 cb4500</leader><controlfield tag="001">BV010434829</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">951019s1983 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)29008393</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010434829</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schmidt, David A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Natural deduction theorem proving in set theory</subfield><subfield code="c">by David Schmidt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Edinburgh</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">University <Edinburgh> / Department of Computer Science: Internal report</subfield><subfield code="v">142</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer software</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Internal report</subfield><subfield code="t">University <Edinburgh></subfield><subfield code="v">142</subfield><subfield code="w">(DE-604)BV006185380</subfield><subfield code="9">142</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006953456</subfield></datafield></record></collection> |
id | DE-604.BV010434829 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:52:29Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006953456 |
oclc_num | 29008393 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 18 S. |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
record_format | marc |
series2 | University <Edinburgh> / Department of Computer Science: Internal report |
spelling | Schmidt, David A. Verfasser aut Natural deduction theorem proving in set theory by David Schmidt Edinburgh 1983 18 S. txt rdacontent n rdamedia nc rdacarrier University <Edinburgh> / Department of Computer Science: Internal report 142 Computer software sigle Mathematics sigle Mathematik Department of Computer Science: Internal report University <Edinburgh> 142 (DE-604)BV006185380 142 |
spellingShingle | Schmidt, David A. Natural deduction theorem proving in set theory Computer software sigle Mathematics sigle Mathematik |
title | Natural deduction theorem proving in set theory |
title_auth | Natural deduction theorem proving in set theory |
title_exact_search | Natural deduction theorem proving in set theory |
title_full | Natural deduction theorem proving in set theory by David Schmidt |
title_fullStr | Natural deduction theorem proving in set theory by David Schmidt |
title_full_unstemmed | Natural deduction theorem proving in set theory by David Schmidt |
title_short | Natural deduction theorem proving in set theory |
title_sort | natural deduction theorem proving in set theory |
topic | Computer software sigle Mathematics sigle Mathematik |
topic_facet | Computer software Mathematics Mathematik |
volume_link | (DE-604)BV006185380 |
work_keys_str_mv | AT schmidtdavida naturaldeductiontheoremprovinginsettheory |