Experimenting with Isabelle in ZF set theory:
Abstract: "The theorem prover Isabelle bas been used to axiomatize ZF set theory with natural deduction and to prove a number of theorems concerning functions. In particular, the axioms and inference rules of four theories have been derived in the form of theorems of set theory. The four theori...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
1989
|
Schriftenreihe: | Computer Laboratory <Cambridge>: Technical report
177 |
Schlagworte: | |
Zusammenfassung: | Abstract: "The theorem prover Isabelle bas been used to axiomatize ZF set theory with natural deduction and to prove a number of theorems concerning functions. In particular, the axioms and inference rules of four theories have been derived in the form of theorems of set theory. The four theories are: 1) [lambda] [subscript BN], a form of typed lambda calculus with equality, 2) Q₀, a form of simple type theory, 3) an intuitionistic first order theory with propositions interpreted as the type of their proofs, 4) PP [lambda], the underlying theory of LCF. Most of the theorems have been derived using backward proofs, with a small amount of automation." |
Beschreibung: | 40 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010411110 | ||
003 | DE-604 | ||
005 | 19960925 | ||
007 | t | ||
008 | 951006s1989 |||| 00||| engod | ||
035 | |a (OCoLC)20798014 | ||
035 | |a (DE-599)BVBBV010411110 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
084 | |a DAT 706f |2 stub | ||
084 | |a MAT 040f |2 stub | ||
100 | 1 | |a Noel, P. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Experimenting with Isabelle in ZF set theory |c by P. A. J. Noel |
264 | 1 | |a Cambridge |c 1989 | |
300 | |a 40 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Computer Laboratory <Cambridge>: Technical report |v 177 | |
520 | 3 | |a Abstract: "The theorem prover Isabelle bas been used to axiomatize ZF set theory with natural deduction and to prove a number of theorems concerning functions. In particular, the axioms and inference rules of four theories have been derived in the form of theorems of set theory. The four theories are: 1) [lambda] [subscript BN], a form of typed lambda calculus with equality, 2) Q₀, a form of simple type theory, 3) an intuitionistic first order theory with propositions interpreted as the type of their proofs, 4) PP [lambda], the underlying theory of LCF. Most of the theorems have been derived using backward proofs, with a small amount of automation." | |
650 | 7 | |a Information theory |2 sigle | |
650 | 7 | |a Mathematics |2 sigle | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Automatic theorem proving | |
650 | 4 | |a Set theory | |
830 | 0 | |a Computer Laboratory <Cambridge>: Technical report |v 177 |w (DE-604)BV004055605 |9 177 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006933086 |
Datensatz im Suchindex
_version_ | 1804124839239221248 |
---|---|
any_adam_object | |
author | Noel, P. A. |
author_facet | Noel, P. A. |
author_role | aut |
author_sort | Noel, P. A. |
author_variant | p a n pa pan |
building | Verbundindex |
bvnumber | BV010411110 |
classification_tum | DAT 706f MAT 040f |
ctrlnum | (OCoLC)20798014 (DE-599)BVBBV010411110 |
discipline | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01692nam a2200349 cb4500</leader><controlfield tag="001">BV010411110</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19960925 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">951006s1989 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)20798014</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010411110</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 706f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 040f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Noel, P. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimenting with Isabelle in ZF set theory</subfield><subfield code="c">by P. A. J. Noel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">40 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Computer Laboratory <Cambridge>: Technical report</subfield><subfield code="v">177</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "The theorem prover Isabelle bas been used to axiomatize ZF set theory with natural deduction and to prove a number of theorems concerning functions. In particular, the axioms and inference rules of four theories have been derived in the form of theorems of set theory. The four theories are: 1) [lambda] [subscript BN], a form of typed lambda calculus with equality, 2) Q₀, a form of simple type theory, 3) an intuitionistic first order theory with propositions interpreted as the type of their proofs, 4) PP [lambda], the underlying theory of LCF. Most of the theorems have been derived using backward proofs, with a small amount of automation."</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Information theory</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic theorem proving</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Computer Laboratory <Cambridge>: Technical report</subfield><subfield code="v">177</subfield><subfield code="w">(DE-604)BV004055605</subfield><subfield code="9">177</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006933086</subfield></datafield></record></collection> |
id | DE-604.BV010411110 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:52:02Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006933086 |
oclc_num | 20798014 |
open_access_boolean | |
physical | 40 S. |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
record_format | marc |
series | Computer Laboratory <Cambridge>: Technical report |
series2 | Computer Laboratory <Cambridge>: Technical report |
spelling | Noel, P. A. Verfasser aut Experimenting with Isabelle in ZF set theory by P. A. J. Noel Cambridge 1989 40 S. txt rdacontent n rdamedia nc rdacarrier Computer Laboratory <Cambridge>: Technical report 177 Abstract: "The theorem prover Isabelle bas been used to axiomatize ZF set theory with natural deduction and to prove a number of theorems concerning functions. In particular, the axioms and inference rules of four theories have been derived in the form of theorems of set theory. The four theories are: 1) [lambda] [subscript BN], a form of typed lambda calculus with equality, 2) Q₀, a form of simple type theory, 3) an intuitionistic first order theory with propositions interpreted as the type of their proofs, 4) PP [lambda], the underlying theory of LCF. Most of the theorems have been derived using backward proofs, with a small amount of automation." Information theory sigle Mathematics sigle Mathematik Automatic theorem proving Set theory Computer Laboratory <Cambridge>: Technical report 177 (DE-604)BV004055605 177 |
spellingShingle | Noel, P. A. Experimenting with Isabelle in ZF set theory Computer Laboratory <Cambridge>: Technical report Information theory sigle Mathematics sigle Mathematik Automatic theorem proving Set theory |
title | Experimenting with Isabelle in ZF set theory |
title_auth | Experimenting with Isabelle in ZF set theory |
title_exact_search | Experimenting with Isabelle in ZF set theory |
title_full | Experimenting with Isabelle in ZF set theory by P. A. J. Noel |
title_fullStr | Experimenting with Isabelle in ZF set theory by P. A. J. Noel |
title_full_unstemmed | Experimenting with Isabelle in ZF set theory by P. A. J. Noel |
title_short | Experimenting with Isabelle in ZF set theory |
title_sort | experimenting with isabelle in zf set theory |
topic | Information theory sigle Mathematics sigle Mathematik Automatic theorem proving Set theory |
topic_facet | Information theory Mathematics Mathematik Automatic theorem proving Set theory |
volume_link | (DE-604)BV004055605 |
work_keys_str_mv | AT noelpa experimentingwithisabelleinzfsettheory |