A formulation of the simple theory of types (for Isabelle):
Abstract: "Simple theory is formulated for use with the generic theorem prover Isabelle. This requires explicit type inference rules. There are function, product, and subset types, which may be empty. Descriptions (the n-operator) introduce the Axiom of Choice. Higher-order logic is obtained th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
1989
|
Schriftenreihe: | Computer Laboratory <Cambridge>: Technical report
175 |
Schlagworte: | |
Zusammenfassung: | Abstract: "Simple theory is formulated for use with the generic theorem prover Isabelle. This requires explicit type inference rules. There are function, product, and subset types, which may be empty. Descriptions (the n-operator) introduce the Axiom of Choice. Higher-order logic is obtained through reflection between formulae and terms of type bool. Recursive types and functions can be formally constructed. Isabelle proof procedures are described. The logic appears suitable for general mathematics as well as computational problems." |
Beschreibung: | 32 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010411081 | ||
003 | DE-604 | ||
005 | 19960925 | ||
007 | t | ||
008 | 951006s1989 |||| 00||| engod | ||
035 | |a (OCoLC)20797081 | ||
035 | |a (DE-599)BVBBV010411081 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
084 | |a DAT 373f |2 stub | ||
084 | |a DAT 706f |2 stub | ||
100 | 1 | |a Paulson, Lawrence C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A formulation of the simple theory of types (for Isabelle) |
264 | 1 | |a Cambridge |c 1989 | |
300 | |a 32 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Computer Laboratory <Cambridge>: Technical report |v 175 | |
520 | 3 | |a Abstract: "Simple theory is formulated for use with the generic theorem prover Isabelle. This requires explicit type inference rules. There are function, product, and subset types, which may be empty. Descriptions (the n-operator) introduce the Axiom of Choice. Higher-order logic is obtained through reflection between formulae and terms of type bool. Recursive types and functions can be formally constructed. Isabelle proof procedures are described. The logic appears suitable for general mathematics as well as computational problems." | |
650 | 7 | |a Computer software |2 sigle | |
650 | 7 | |a Information theory |2 sigle | |
650 | 7 | |a Mathematics |2 sigle | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Automatic theorem proving | |
650 | 4 | |a Type theory | |
830 | 0 | |a Computer Laboratory <Cambridge>: Technical report |v 175 |w (DE-604)BV004055605 |9 175 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006933060 |
Datensatz im Suchindex
_version_ | 1804124839204618240 |
---|---|
any_adam_object | |
author | Paulson, Lawrence C. |
author_facet | Paulson, Lawrence C. |
author_role | aut |
author_sort | Paulson, Lawrence C. |
author_variant | l c p lc lcp |
building | Verbundindex |
bvnumber | BV010411081 |
classification_tum | DAT 373f DAT 706f |
ctrlnum | (OCoLC)20797081 (DE-599)BVBBV010411081 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01623nam a2200361 cb4500</leader><controlfield tag="001">BV010411081</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19960925 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">951006s1989 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)20797081</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010411081</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 373f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 706f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Paulson, Lawrence C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A formulation of the simple theory of types (for Isabelle)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">32 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Computer Laboratory <Cambridge>: Technical report</subfield><subfield code="v">175</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Simple theory is formulated for use with the generic theorem prover Isabelle. This requires explicit type inference rules. There are function, product, and subset types, which may be empty. Descriptions (the n-operator) introduce the Axiom of Choice. Higher-order logic is obtained through reflection between formulae and terms of type bool. Recursive types and functions can be formally constructed. Isabelle proof procedures are described. The logic appears suitable for general mathematics as well as computational problems."</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer software</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Information theory</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic theorem proving</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Type theory</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Computer Laboratory <Cambridge>: Technical report</subfield><subfield code="v">175</subfield><subfield code="w">(DE-604)BV004055605</subfield><subfield code="9">175</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006933060</subfield></datafield></record></collection> |
id | DE-604.BV010411081 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:52:02Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006933060 |
oclc_num | 20797081 |
open_access_boolean | |
physical | 32 S. |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
record_format | marc |
series | Computer Laboratory <Cambridge>: Technical report |
series2 | Computer Laboratory <Cambridge>: Technical report |
spelling | Paulson, Lawrence C. Verfasser aut A formulation of the simple theory of types (for Isabelle) Cambridge 1989 32 S. txt rdacontent n rdamedia nc rdacarrier Computer Laboratory <Cambridge>: Technical report 175 Abstract: "Simple theory is formulated for use with the generic theorem prover Isabelle. This requires explicit type inference rules. There are function, product, and subset types, which may be empty. Descriptions (the n-operator) introduce the Axiom of Choice. Higher-order logic is obtained through reflection between formulae and terms of type bool. Recursive types and functions can be formally constructed. Isabelle proof procedures are described. The logic appears suitable for general mathematics as well as computational problems." Computer software sigle Information theory sigle Mathematics sigle Mathematik Automatic theorem proving Type theory Computer Laboratory <Cambridge>: Technical report 175 (DE-604)BV004055605 175 |
spellingShingle | Paulson, Lawrence C. A formulation of the simple theory of types (for Isabelle) Computer Laboratory <Cambridge>: Technical report Computer software sigle Information theory sigle Mathematics sigle Mathematik Automatic theorem proving Type theory |
title | A formulation of the simple theory of types (for Isabelle) |
title_auth | A formulation of the simple theory of types (for Isabelle) |
title_exact_search | A formulation of the simple theory of types (for Isabelle) |
title_full | A formulation of the simple theory of types (for Isabelle) |
title_fullStr | A formulation of the simple theory of types (for Isabelle) |
title_full_unstemmed | A formulation of the simple theory of types (for Isabelle) |
title_short | A formulation of the simple theory of types (for Isabelle) |
title_sort | a formulation of the simple theory of types for isabelle |
topic | Computer software sigle Information theory sigle Mathematics sigle Mathematik Automatic theorem proving Type theory |
topic_facet | Computer software Information theory Mathematics Mathematik Automatic theorem proving Type theory |
volume_link | (DE-604)BV004055605 |
work_keys_str_mv | AT paulsonlawrencec aformulationofthesimpletheoryoftypesforisabelle |