Complex analysis and special topics in harmonic analysis:
A companion volume to the text Complex Variables: An Introduction by the same authors, this book further develops the theory of holomorphic functions, continuing to emphasize the role that the Cauchy-Riemann equation plays in modern complex analysis. Topics considered include boundary values of holo...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY ; Berlin ; Heidelberg
Springer
1995
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | A companion volume to the text Complex Variables: An Introduction by the same authors, this book further develops the theory of holomorphic functions, continuing to emphasize the role that the Cauchy-Riemann equation plays in modern complex analysis. Topics considered include boundary values of holomorphic functions in the sense of distributions and hyperfunctions; L[superscript 2]-estimates for solutions of the Cauchy-Riemann equation, interpolation problems, and ideal theory in algebras of entire functions with growth conditions; exponential polynomials; the G transform and the unifying role it plays in complex analysis and transcendental number theory; summation methods; and the spectral synthesis theorem of L. Schwartz concerning the solutions of a homogeneous convolution equation on the real line and its applications in harmonic analysis By providing an overview of current research and open problems, as well as topics that have wide applications in engineering, this book should be of interest to mathematicians and applied mathematicians, as well as to graduate students beginning their research |
Beschreibung: | X, 482 Seiten graph. Darst. |
ISBN: | 0387944117 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV010403069 | ||
003 | DE-604 | ||
005 | 20210329 | ||
007 | t | ||
008 | 950928s1995 d||| |||| 00||| engod | ||
016 | 7 | |a 945652704 |2 DE-101 | |
020 | |a 0387944117 |9 0-387-94411-7 | ||
035 | |a (OCoLC)31606223 | ||
035 | |a (DE-599)BVBBV010403069 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-824 |a DE-12 |a DE-29T |a DE-19 |a DE-634 |a DE-83 |a DE-188 | ||
050 | 0 | |a QA331.7 | |
082 | 0 | |a 515/.9 |2 20 | |
084 | |a SK 700 |0 (DE-625)143253: |2 rvk | ||
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
084 | |a MAT 430f |2 stub | ||
084 | |a MAT 320f |2 stub | ||
100 | 1 | |a Berenstein, Carlos A. |d 1944-2019 |e Verfasser |0 (DE-588)130607010 |4 aut | |
245 | 1 | 0 | |a Complex analysis and special topics in harmonic analysis |c Carlos A. Berenstein, Roger Gay |
264 | 1 | |a New York, NY ; Berlin ; Heidelberg |b Springer |c 1995 | |
300 | |a X, 482 Seiten |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a A companion volume to the text Complex Variables: An Introduction by the same authors, this book further develops the theory of holomorphic functions, continuing to emphasize the role that the Cauchy-Riemann equation plays in modern complex analysis. Topics considered include boundary values of holomorphic functions in the sense of distributions and hyperfunctions; L[superscript 2]-estimates for solutions of the Cauchy-Riemann equation, interpolation problems, and ideal theory in algebras of entire functions with growth conditions; exponential polynomials; the G transform and the unifying role it plays in complex analysis and transcendental number theory; summation methods; and the spectral synthesis theorem of L. Schwartz concerning the solutions of a homogeneous convolution equation on the real line and its applications in harmonic analysis | |
520 | |a By providing an overview of current research and open problems, as well as topics that have wide applications in engineering, this book should be of interest to mathematicians and applied mathematicians, as well as to graduate students beginning their research | ||
650 | 7 | |a Analyse harmonique |2 ram | |
650 | 7 | |a Complexe variabelen |2 gtt | |
650 | 7 | |a Fonctions d'une variable complexe |2 ram | |
650 | 7 | |a Fourier-analyse |2 gtt | |
650 | 7 | |a Functies (wiskunde) |2 gtt | |
650 | 7 | |a analyse complexe |2 inriac | |
650 | 7 | |a analyse harmonique |2 inriac | |
650 | 7 | |a fonction holomorphe |2 inriac | |
650 | 7 | |a théorie fonction |2 inriac | |
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Harmonic analysis | |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Gay, Roger |e Verfasser |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006926859&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-006926859 |
Datensatz im Suchindex
_version_ | 1804124829538844672 |
---|---|
adam_text | Contents
Preface vii
CHAPTER 1
Boundary Values of Holomorphic Functions and
Analytic Functionals 1
1.1. The Hardy Spaces in the Disk 2
1.2. Hyperfunctions 35
1.3. Analytic Functionals and Entire Functions of Exponential Type 51
1.4. Vade Mecum of Functional Analysis 77
1.5. Convolution of Analytic Functionals 85
1.6. Analytic Functionals on the Unit Circle 94
CHAPTER 2
Interpolation and the Algebras Ap 109
2.1. The Algebras A 109
2.2. Interpolation with Growth Conditions 118
2.3. Ideal Theory in Ap 136
2.4. Dense Ideals in Ap(Q) 160
2.5. Local Ideals and Conductor Ideals in Ap 166
2.6. The Algebra Ap of Entire Functions of Order at Most p 170
CHAPTER 3
Exponential Polynomials 198
3.1. The Ring of Exponential Polynomials 198
3.2. Distributions of Zeros of an Exponential Polynomial 217
CHAPTER 4
Integral Valued Entire Functions 260
4.1. The G Transform 260
4.2. Integral Valued Entire Functions 278
ix
x Contents
CHAPTER 5
Summation Methods 299
5.1. Borel and Mittag Leffler Summation Methods 299
5.2. The Lindelof Indicator Function 316
5.3. The Fourier Borel Transform of Order p of Analytic Functionals 326
5.4. Analytic Functionals with Noncompact Carrier 333
CHAPTER 6
Harmonic Analysis 353
6.1. Convolution Equations in U 354
6.2. Convolution Equations in C 385
6.3. The Equation f(z + 1) /(z) = g(z) 405
6.4. Differential Operators of Infinite Order 419
6.5. Deconvolution 458
References 471
Notation 479
Index 481
|
any_adam_object | 1 |
author | Berenstein, Carlos A. 1944-2019 Gay, Roger |
author_GND | (DE-588)130607010 |
author_facet | Berenstein, Carlos A. 1944-2019 Gay, Roger |
author_role | aut aut |
author_sort | Berenstein, Carlos A. 1944-2019 |
author_variant | c a b ca cab r g rg |
building | Verbundindex |
bvnumber | BV010403069 |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331.7 |
callnumber-search | QA331.7 |
callnumber-sort | QA 3331.7 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 700 SK 750 |
classification_tum | MAT 430f MAT 320f |
ctrlnum | (OCoLC)31606223 (DE-599)BVBBV010403069 |
dewey-full | 515/.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.9 |
dewey-search | 515/.9 |
dewey-sort | 3515 19 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03292nam a2200589 c 4500</leader><controlfield tag="001">BV010403069</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210329 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950928s1995 d||| |||| 00||| engod</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">945652704</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387944117</subfield><subfield code="9">0-387-94411-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)31606223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010403069</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.9</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 700</subfield><subfield code="0">(DE-625)143253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 430f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 320f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berenstein, Carlos A.</subfield><subfield code="d">1944-2019</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)130607010</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex analysis and special topics in harmonic analysis</subfield><subfield code="c">Carlos A. Berenstein, Roger Gay</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY ; Berlin ; Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 482 Seiten</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">A companion volume to the text Complex Variables: An Introduction by the same authors, this book further develops the theory of holomorphic functions, continuing to emphasize the role that the Cauchy-Riemann equation plays in modern complex analysis. Topics considered include boundary values of holomorphic functions in the sense of distributions and hyperfunctions; L[superscript 2]-estimates for solutions of the Cauchy-Riemann equation, interpolation problems, and ideal theory in algebras of entire functions with growth conditions; exponential polynomials; the G transform and the unifying role it plays in complex analysis and transcendental number theory; summation methods; and the spectral synthesis theorem of L. Schwartz concerning the solutions of a homogeneous convolution equation on the real line and its applications in harmonic analysis</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">By providing an overview of current research and open problems, as well as topics that have wide applications in engineering, this book should be of interest to mathematicians and applied mathematicians, as well as to graduate students beginning their research</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analyse harmonique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Complexe variabelen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fonctions d'une variable complexe</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier-analyse</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functies (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">analyse complexe</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">analyse harmonique</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">fonction holomorphe</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">théorie fonction</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gay, Roger</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006926859&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006926859</subfield></datafield></record></collection> |
id | DE-604.BV010403069 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:51:53Z |
institution | BVB |
isbn | 0387944117 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006926859 |
oclc_num | 31606223 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-824 DE-12 DE-29T DE-19 DE-BY-UBM DE-634 DE-83 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-824 DE-12 DE-29T DE-19 DE-BY-UBM DE-634 DE-83 DE-188 |
physical | X, 482 Seiten graph. Darst. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer |
record_format | marc |
spelling | Berenstein, Carlos A. 1944-2019 Verfasser (DE-588)130607010 aut Complex analysis and special topics in harmonic analysis Carlos A. Berenstein, Roger Gay New York, NY ; Berlin ; Heidelberg Springer 1995 X, 482 Seiten graph. Darst. txt rdacontent n rdamedia nc rdacarrier A companion volume to the text Complex Variables: An Introduction by the same authors, this book further develops the theory of holomorphic functions, continuing to emphasize the role that the Cauchy-Riemann equation plays in modern complex analysis. Topics considered include boundary values of holomorphic functions in the sense of distributions and hyperfunctions; L[superscript 2]-estimates for solutions of the Cauchy-Riemann equation, interpolation problems, and ideal theory in algebras of entire functions with growth conditions; exponential polynomials; the G transform and the unifying role it plays in complex analysis and transcendental number theory; summation methods; and the spectral synthesis theorem of L. Schwartz concerning the solutions of a homogeneous convolution equation on the real line and its applications in harmonic analysis By providing an overview of current research and open problems, as well as topics that have wide applications in engineering, this book should be of interest to mathematicians and applied mathematicians, as well as to graduate students beginning their research Analyse harmonique ram Complexe variabelen gtt Fonctions d'une variable complexe ram Fourier-analyse gtt Functies (wiskunde) gtt analyse complexe inriac analyse harmonique inriac fonction holomorphe inriac théorie fonction inriac Functions of complex variables Harmonic analysis Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 s DE-604 Harmonische Analyse (DE-588)4023453-8 s Gay, Roger Verfasser aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006926859&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Berenstein, Carlos A. 1944-2019 Gay, Roger Complex analysis and special topics in harmonic analysis Analyse harmonique ram Complexe variabelen gtt Fonctions d'une variable complexe ram Fourier-analyse gtt Functies (wiskunde) gtt analyse complexe inriac analyse harmonique inriac fonction holomorphe inriac théorie fonction inriac Functions of complex variables Harmonic analysis Harmonische Analyse (DE-588)4023453-8 gnd Funktionentheorie (DE-588)4018935-1 gnd |
subject_GND | (DE-588)4023453-8 (DE-588)4018935-1 |
title | Complex analysis and special topics in harmonic analysis |
title_auth | Complex analysis and special topics in harmonic analysis |
title_exact_search | Complex analysis and special topics in harmonic analysis |
title_full | Complex analysis and special topics in harmonic analysis Carlos A. Berenstein, Roger Gay |
title_fullStr | Complex analysis and special topics in harmonic analysis Carlos A. Berenstein, Roger Gay |
title_full_unstemmed | Complex analysis and special topics in harmonic analysis Carlos A. Berenstein, Roger Gay |
title_short | Complex analysis and special topics in harmonic analysis |
title_sort | complex analysis and special topics in harmonic analysis |
topic | Analyse harmonique ram Complexe variabelen gtt Fonctions d'une variable complexe ram Fourier-analyse gtt Functies (wiskunde) gtt analyse complexe inriac analyse harmonique inriac fonction holomorphe inriac théorie fonction inriac Functions of complex variables Harmonic analysis Harmonische Analyse (DE-588)4023453-8 gnd Funktionentheorie (DE-588)4018935-1 gnd |
topic_facet | Analyse harmonique Complexe variabelen Fonctions d'une variable complexe Fourier-analyse Functies (wiskunde) analyse complexe analyse harmonique fonction holomorphe théorie fonction Functions of complex variables Harmonic analysis Harmonische Analyse Funktionentheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006926859&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT berensteincarlosa complexanalysisandspecialtopicsinharmonicanalysis AT gayroger complexanalysisandspecialtopicsinharmonicanalysis |