Beyond quasicrystals: Les Houches, March 7 - 18, 1994
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Tagungsbericht Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer [u.a.]
1995
|
Schriftenreihe: | Centre de Physique Les Houches
3 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 619 S. Ill., graph. Darst. |
ISBN: | 3540592512 2868832482 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010387571 | ||
003 | DE-604 | ||
005 | 20221130 | ||
007 | t | ||
008 | 950911s1995 gw ad|| |||| 10||| eng d | ||
016 | 7 | |a 94502990X |2 DE-101 | |
020 | |a 3540592512 |9 3-540-59251-2 | ||
020 | |a 2868832482 |9 2-86883-248-2 | ||
035 | |a (OCoLC)32687890 | ||
035 | |a (DE-599)BVBBV010387571 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-29T |a DE-384 |a DE-12 |a DE-703 |a DE-91G |a DE-83 | ||
050 | 0 | |a QC173.4.Q36 | |
050 | 0 | |a QD926 | |
082 | 0 | |a 530.4/11 |2 20 | |
084 | |a UQ 8750 |0 (DE-625)146603: |2 rvk | ||
084 | |a PHY 623f |2 stub | ||
245 | 1 | 0 | |a Beyond quasicrystals |b Les Houches, March 7 - 18, 1994 |c [Centre de Physique]. Eds. Françoise Axel ... |
264 | 1 | |a Berlin [u.a.] |b Springer [u.a.] |c 1995 | |
300 | |a XVI, 619 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centre de Physique Les Houches |v 3 | |
650 | 7 | |a Physique mathématique - Congrès |2 ram | |
650 | 7 | |a Quasicristaux - Congrès |2 ram | |
650 | 7 | |a Quasikristallen |2 gtt | |
650 | 7 | |a Systèmes, théorie des - Congrès |2 ram | |
650 | 4 | |a Quasicrystals |v Congresses | |
650 | 0 | 7 | |a Quasikristall |0 (DE-588)4202613-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 1994 |z Les Houches |2 gnd-content | |
689 | 0 | 0 | |a Quasikristall |0 (DE-588)4202613-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Axel, Françoise |4 edt | |
710 | 2 | |a Centre de Physique (Les Houches) |e Sonstige |0 (DE-588)2057705-9 |4 oth | |
711 | 2 | |a Winter School Beyond Quasicrystals |d 1994 |c Les Houches |j Sonstige |0 (DE-588)5158480-3 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-662-03130-8 |
830 | 0 | |a Centre de Physique Les Houches |v 3 |w (DE-604)BV011876452 |9 3 | |
856 | 4 | 2 | |m Digitalisierung TU Muenchen |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006916517&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-006916517 |
Datensatz im Suchindex
_version_ | 1804124813383434240 |
---|---|
adam_text | CONTENTS
Quasicrystals ...
course
ι
Quasicrystals, diophantine
approximation and algebraic numbers
by Yves Meyer
1.
Introduction
....................................................................................
З
2.
Almost-periodic functions,
Poisson
summation formula and algebraic numbers
...... 5
3.
Model sets and quasicrystals
................................................................. 9
4.
Quasicrystals and diophantine approximation
.............................................. 10
5.
Poisson
summation formula and quasicrystals
............................................ 14
6.
Conclusion
..................................................................................... 15
COURSE
2
The pentacrystals
by J. Patera
1.
Introduction
.................................................................................... 17
2.
Preliminaries
................................................................................... 18
3.
The pentacrystal map
.......................................................................... 20
4.
Definition of quasicrystals
.................................................................... 22
5.
Phasons
......................................................................................... 23
6. Quasiaddition.................................................................................. 24
7.
Examples
....................................................................................... 25
COURSE
3
Elements of a multimetrical crystallography
by A. Janner
Abstract
..............................................................................■............. 33
1.
Introduction
.................................................................................... 33
2.
Close-packed structures
...................................................................... 35
2.1
The 2-dimensional case
.................................................................. 35
2.2
The
З
-dimensional
case
.................................................................. 35
3.
Multimetrical symmetry of the 2D hexagonal lattice
....................................... 37
4.
Binary integral quadratic forms and quadratic fields
...................................... 39
5.
Indefinite ternary integral quadratic forms
.................................................. 41
6.
Quadratic forms of lattices of
3D
close-packed structures
................................ 44
6.1
Reduced metric tensors
.................................................................. 44
6.2
Indefinite binary quadratic forms
....................................................... 45
6.3
Indefinite ternary quadratic forms
...................................................... 46
7.
Multimetrical point group of the hexagonal close-packed lattice
......................... 47
8.
Multimetrical space groups of crystal structures
........................................... 49
VIII
8.1
Hexagonal
close-packed structures
........................................................ 50
8.2
The Wurtzite
structure
....................................................................... 51
9.
Concluding remarks
........................................................................... 52
COURSE
4
Non-commutative models for quasicrystals
by P. Kramer and J. Garcia-Escudero
1.
Why non-commutative models for quasicrystals
?........................................ 55
2.
Free groups and their automorphisms
...................................................... 56
3.
Non-commutative crystallography
.......................................................... 57
4.
Structure and geometry of the group Aut(F2)
.............................................. 58
5.
Free groups and automorphisms for
η
> 2................................................ 66
6.
Non-commutative models and symmetries for 2D quasiperiodic patterns
.............. 66
7.
Automata for the triangle and Penrose patterns
............................................ 69
8.
Survey of other results
........................................................................ 72
COURSE
5
From quasiperiodic to more complex systems
by T.
Janssen
1.
Structures
....................................................................................... 75
1.1
Introduction
............................................................................... 75
1.2
Classes of quasiperiodic structures
..................................................... 78
1.3
Embedding of quasiperiodic systems
.................................................. 81
1.4
Superspace groups
....................................................................... 84
1.5
Action of symmetry groups in 3-dimensional space
................................. 86
1.6
Scale symmetries
......................................................................... 89
1.7
Hierarchy of structures
.................................................................. 91
1.8
Physical origin of quasiperiodicity
..................................................... 93
2.
Diffraction
...................................................................................... 94
2.1
Structure factor
........................................................................... 94
2.2
Structure factor of quasiperiodic structures
........................................... 97
2.3
Influence of symmetry
................................................................... 99
2.4
Thermal vibrations
....................................................................... 100
2.5
Disorder
................................................................................... 101
3.
Phonons
........................................................................................ 104
3.1
Phonons in
1С
phases
.................................................................... 104
3.2
Spectra
..................................................................................... 110
3.3
Phonons in quasicrystals
................................................................
Ill
3.4
Neutron scattering from quasiperiodic structures
..................................... 116
4.
Substitution^ chains
.......................................................................... 122
4.1
Introduction
............................................................................... 122
4.2
Atomic surfaces
........................................................................... 124
4.3
Fractal atomic surfaces
................................................................... 127
5.
Electrons
........................................................................................ 132
5.1
Models
..................................................................................... 132
5.2
Spectra
..................................................................................... 135
5.3
Wave functions
........................................................................... 136
IX
COURSE
6
Matching rules and quasiperiodicity: the octagonal tilings
by A. Katz
1.
Introduction
.................................................................................... 141
2.
Quasiperiodic tilings
.......................................................................... 142
2.1
Quasiperiodicity
.......................................................................... 142
2.2
The atomic surfaces
...................................................................... 143
2.3
The cut algorithm
......................................................................... 144
2.4
Canonical or Penrose like tilings
..................................................... 144
2.4.1
Definition
............................................................................ 144
2.4.2
The oblique tiling
................................................................... 145
2.4.3
Octagonal tilings
.................................................................... 146
3.
The composition-decomposition method
................................................... 148
3.1
Self-similarity
............................................................................. 148
3.2
Inflation and quasiperiodicity
........................................................... 150
4.
The method of forbidden planes
............................................................. 151
4.1
Position of the problem
.................................................................. 151
4.2
Non-transversality conditions
........................................................... 153
4.3
The forbidden planes
..................................................................... 154
5.
Decoration of the tiles
......................................................................... 156
5.1
A simple case
............................................................................. 156
5.2
The Ammann decoration of vertices
.................................................... 159
6.
The main theorem
............................................................................. 162
6.1
Position and intersections of the forbidden planes
................................... 162
6.2
Systems of data
........................................................................... 163
6.3
Propagation of order
..................................................................... 164
6.4
Proof of the theorem
..................................................................... 166
6.4.1
The pushing procedure
............................................................ 166
6.4.2
The cone of planes
................................................................. 168
6.5
Quasiperiodic tilings and special tilings
............................................. 170
7.
Generalised Ammann tilings
................................................................. 174
7.1
Definitions
................................................................................. 174
7.2
Symmetry considerations
................................................................ 174
7.3
Setting the method
........................................................................ 175
7.3.1
Systems of data in
ε,
............................................................... 177
7.4
Reduction to bad prisms
.............................................................. 177
7.5
Proof of the theorem
..................................................................... 178
7.6
Order in generalised Ammann tilings of the first kind
............................... 181
7.7
Generalised Ammann tilings of the second kind: an example of weak rules
...... 183
8.
Conclusion
..................................................................................... 188
COURSE
7
A mechanism for diffusion in quasicrystals
by
P.A.
Kalugin
............................................................................... 191
COURSE
8
Experimental aspects of the structure analysis of aperiodic
materials
by W. Steurer
1.
Introduction
.................................................................................... 203
2.
What are aperiodic materials
?............................................................... 204
3.
Experimental probes for distinguishing between crystals and aperiodic structures.
... 206
3.1
Diffraction methods
...................................................................... 207
3.2
Imaging techniques
....................................................................... 211
3.3
Spectroscopical methods
................................................................ 212
4.
Structure determination methods
............................................................ 212
4.1
The maximum-entropy method (MEM)
................................................ 213
4.2
How many reflections have to be measured
?......................................... 214
4.3
Aperiodic sequences and their Fourier transforms
................................... 216
4.4
Symmetry-minimum function and Patterson Deconvolution
........................ 218
4.5
Quasicrystals versus twinned approximants
.......................................... 224
5.
Quantitative aperiodic-crystal structure analysis
........................................... 226
COURSE
9
Scattering on aperiodic superlattices
by P. Mikulik
1.
Introduction
.................................................................................... 229
2.
Theories of X-ray diffraction
................................................................ 230
2.1
Kinematical theory of X-ray diffraction
............................................... 230
2.1.1
The
Fraunhofer
approximation
................................................... 230
2.1.2
Stationary phase method
........................................................... 232
2.2
Dynamical theory
......................................................................... 232
2.2.1
Semi-kinematical approximation
.................................................. 233
3.
Diffraction on multilayers
.................................................................... 234
3.1
Periodic lattice
............................................................................ 236
3.2
The Fibonacci lattice
..................................................................... 237
3.2.1
Finite length of the Fibonacci lattice
.............................................. 239
3.2.2
Calculations in the semi-kinematical approximation
............................ 240
3.2.3
Maxima of the diffraction curve of Fibonacci SL
............................... 241
3.3
Other aperiodic superlattices
............................................................ 242
4.
X-ray reflectivity
.............................................................................. 243
5.
Gratings
........................................................................................ 244
6.
Conclusion
..................................................................................... 246
COURSE
10
Defects in quasicrystals, in systems with deterministic disorder and
in amorphous materials
by
N.
Rivier
1.
Introduction
.................................................................................... 249
2.
Defects in condensed matter
.................................................................. 252
2.1
Homotopy description of defects
....................................................... 253
2.2
A simple method for calculating homotopy groups
.................................. 260
2.3
Defects in crystals: dislocations
......................................................... 261
3.
Defects in quasicrystals
....................................................................... 263
3.1
The oblique tiling
......................................................................... 265
3.1.1
Tilings in 2d and their topological defects
....................................... 265
3.1.2
The oblique tiling
................................................................... 267
3.1.3
Defects in quasicrystals; summary
............................................... 269
3.2
Observation of defects
................................................................... 270
3.2.1
Phase contrast and diffraction contrast microscopy
............................ 271
4.
Defects in amorphous materials
.............................................................. 272
4.1
Symmetry of disorder
.................................................................... 273
4.2
Glass as a fibre bundle
................................................................... 273
XI
4.3
Curved space, packing atoms and frustration
......................................... 276
4.4
Iterative decurving
........................................................................ 277
4.4.1
Three-dimensional materials
...................................................... 279
4.4.1.1
The laves phase
........................................................... 280
4.4.1.2
Hierarchic glass
........................................................... 281
4.4.1.3
Spatial disorder
........................................................... 282
4.4.2
The role of entropy
................................................................. 285
5.
Conclusions
.................................................................................... 286
...and Beyond
COURSE
11
Automata and automatic sequences
by J.-P. Allouche and M.
Mendès
France
Part I. Introduction. Substitutions and finite automata
....................................... 293
1.
The Fibonacci sequence
...................................................................... 295
2.
The Prouhet-Thue-Morse sequence
......................................................... 296
3.
The paper folding sequence
.................................................................. 297
4.
Automatic sequences: definition; a zoo of examples. A warning
........................ 298
5.
Where finite automata enter the picture
..................................................... 303
6.
How random can an automatic sequence be
?.............................................. 304
7.
Miscellanea
..................................................................................... 305
8.
Appendix: automata generating the five examples of section
4.......................... 308
Part II. Further properties of paperfolding
.................................................... 312
1.
Direct reading and reverse reading
.......................................................... 312
2.
Words and diagrams
.......................................................................... 313
3.
The folding operators
......................................................................... 314
4.
The dimension of a curve
..................................................................... 318
5.
Paperfolding and continued fractions
....................................................... 320
Partili.
Complements
........................................................................... 324
1.
Repetitions in infinite sequences
............................................................. 324
1.1
The beginning of the story
.............................................................. 324
1.2
Why study repetitions?
.................................................................. 325
1.3
More examples
............................................................................ 325
2.
Multidimensional morphisms and (finite) automata
....................................... 326
2.1
An example
................................................................................ 326
2.2
Properties
.................................................................................. 327
3.
Links with cellular automata
................................................................. 327
Part IV. Fourier Analysis
........................................................................ 331
1.
Fourier-Bohr coefficients
..................................................................... 332
2.
Besseľs
inequality and Parseval s equality
................................................ 333
3.
The Wiener spectrum and the spectral measure
............................................ 334
4.
Analysing the spectral measure
.............................................................. 337
5.
Appendix I: the spectral measure of the Thue-Morse sequence
.......................... 337
6.
Appendix
П:
the spectral measure of the paperfolding sequence
........................ 343
хп
Part V. Complexity of infinite sequences
...................................................... 346
1.
Sturmian sequences and generalizations
.................................................... 347
2.
Complexity of automatic sequences
......................................................... 348
2.1
An upper bound
.......................................................................... 348
2.2
Complexity function of some automatic sequences
.................................. 348
2.3
The case of non-constant length morphisms
.......................................... 349
Part VI. Opacity of an automaton
............................................................... 352
1.
Automata revisited
............................................................................. 352
2.
Computing the opacity
........................................................................ 355
Part
VII.
The Ising automaton
.................................................................. 358
1.
The inhomogeneous Ising chain
............................................................. 358
2.
The induced field
.............................................................................. 359
3.
The Ising automaton
.......................................................................... 362
4.
An ergodic property
........................................................................... 364
5.
Opacity of the Ising automaton
.............................................................. 366
COURSE
12
Spectral study of automatic and
substitutive
sequences
by
Martine
Queffelec
Introduction
....................................................................................... 369
1.
Measures on
Τ
................................................................................. 370
1.1
Basic definitions and notations
......................................................... 370
1.2
Discrete and continuous measures
...................................................... 371
1.3
Singularity and absolute continuity
..................................................... 372
1.4
Constructive examples
................................................................... 373
2.
Tools from ergodic theory
.................................................................... 376
2.1
For mutual singularity of measures
.................................................... 376
2.2
For dichotomy properties
................................................................ 379
3.
Correlation measures
.......................................................................... 380
3.1
Correlation of sequences
................................................................ 380
3.2
Classification
.............................................................................. 381
4.
Substitutive
sequences
-
automatic sequences
............................................. 382
4.1
Basic notations
............................................................................ 382
4.2
Basic definitions
.......................................................................... 383
4.3
Examples
.................................................................................. 383
5.
Substitution dynamical systems
............................................................. 385
5.1
Definitions and basic results
............................................................ 385
5.2
Examples
.................................................................................. 386
5.3
Spectrum of
ζ
............................................................................. 388
5.4
Discrete substitutions
.................................................................... 390
6.
Substitutions of constant length
............................................................. 391
6.1
Examples
.................................................................................. 391
6.2
Discrete substitutions of constant length
............................................... 392
6.3
Spectrum of a substitution of length
q
................................................. 394
6.4
Dynamical system as extension of the odometer
...................................... 396
7.
Substitutions of non-constant length
........................................................ 398
7.1
Description of eigenvalues
.............................................................. 398
7.2
Various situations for A = {a,b}
....................................................... 399
7.3
Miscellaneous
............................................................................. 407
7.4
Conclusion
................................................................................ 410
XIII
COURSE
13
Random and automatic walks
by
F.M. Dekking
1.
Introduction
.................................................................................... 415
2.
Automatic walks
............................................................................... 416
3.
Scaling structure and self-similarity
......................................................... 420
4.
Quasi lattice walks
............................................................................. 421
5.
Dynamical systems, random and automatic
................................................ 424
6.
Generalized random walks
................................................................... 425
7.
Mean square displacement
.................................................................... 428
COURSE
14
Singular words, invertible substitutions and local isomorphisms
by Wen Zhi-Ying
1.
Introduction
.................................................................................... 433
2.
Singular words
................................................................................ 434
3.
Invertible substitutions
........................................................................ 436
4.
Fibonacci-chain as a periodic chain with discommensurations
.......................... 438
COURSE
15
Entropy in deterministic and random systems
by V.
Berthe
1.
Introduction
.................................................................................... 441
2.
Thermodynamical entropy
.................................................................... 442
3.
Information theory
............................................................................ 442
3.1
Entropy of a single event
................................................................ 443
3.2
Entropy of an experiment
................................................................ 443
3.3
Concavity of the function
L
............................................................. 444
3.4
Marginal and conditional entropy
....................................................... 445
3.5
Entropy of a finite curve
................................................................. 446
3.6
The sequence of block entropies
........................................................ 447
4.
Topological and measure-theoretic entropies
............................................... 449
4.1
Topological entropy of a sequence
..................................................... 449
4.2
Measure-theoretic entropy of a sequence
.............................................. 450
4.3
Measure-theoretic entropy of a partition
............................................... 450
4.4
Topological entropy of an open cover
................................................. 452
4.5
Variational principle
...................................................................... 453
5.
Entropy and spectral properties
.............................................................. 454
6.
Some examples of computation of block entropies
........................................ 455
6.1
Ultimately periodic and random sequences
......................................... 456
6.2
Sturmian sequences
...................................................................... 457
6.3
Block frequencies for some automatic sequences
.................................... 459
6.4
Conclusion
................................................................................ 460
XIV
COURSE
16
Trace
maps
by J.
Peyrière
1
.Introduction
..................................................................................... 465
2.
Some identities for
2
x
2 -
matrices
......................................................... 466
3.
Reviews and notations for free groups
..................................................... 470
3.1
Free semi-group generated by
Я
........................................................ 470
3.2
Free group generated by
Я
.............................................................. 470
3.3
Representations in SL
(2,
C)
............................................................ 471
3.4
Endomorphisms
.......................................................................... 471
4.
Trace maps (two letter alphabet)
............................................................. 472
4.1
Definition of trace maps
................................................................. 472
4.2
First properties of trace maps
........................................................... 474
4.3
Further properties of trace maps
........................................................ 475
5.
Trace maps (n letter alphabet)
................................................................ 476
5.1
Three letter alphabet
...................................................................... 476
5.2
и
letter alphabet
.......................................................................... 477
6.
Comments
...................................................................................... 477
COURSE
17
Schrödinger
difference equation with deterministic ergodic
potentials
by
A. Sütő
1.
Introduction
.................................................................................... 483
2.
Main examples
................................................................................. 484
3.
General results on the
Schrödinger
difference equation
.................................. 488
3.1
Basic observations
....................................................................... 488
3.2
Transfer matrices
......................................................................... 489
3.3
Lyapunov exponent
...................................................................... 492
3.4
Scattering problem:
Landauer
resistance
............................................... 493
4. Schrödinger
equation with periodic potentials
............................................. 495
5.
Spectral theory
................................................................................. 498
5.1 Schrödinger
operator, /^(Z^space and spectrum
..................................... 498
5.2
Point spectrum
............................................................................ 499
5.3
Cantor sets
................................................................................ 502
5.4
Continuous spectrum
.................................................................... 502
5.5
Spectral projections
...................................................................... 503
5.6
Measures
.................................................................................. 506
5.7
Cantor function
........................................................................... 509
5.8
Spectral measures and spectral types
................................................... 510
5.9
A spectral measure for tf0
............................................................... 514
5.10
r(Z) versus ^(N)
...................................................................... 515
5.11
Asymptotic behaviour of generalized eigenfunctions. Subordinacy
.............. 515
6. Schrödinger
equation with strictly ergodic potentials
..................................... 517
6.1
Strict ergodicity
........................................................................... 517
6.2
The spectrum
οΐΗ(ω) = Η0+
V
(ω).................................................
518
6.3
Integrated density of states
.............................................................. 520
6.4
IDS and Lyapunov exponent
............................................................ 521
XV
6.5
Results on the set {E :y(E) = 0}
...................................................... 522
6.6
The role of periodic approximants
...................................................... 524
6.7
Gordon-type theorems
................................................................... 524
6.8
Kotani theorem for potentials of finite range
.......................................... 525
6.9
Gap labelling
.............................................................................. 526
7. Schrödinger
equation with Sturmian and substitutional potentials
...................... 527
7.1
Fibonacci potential
....................................................................... 527
7.2
General Sturmian potentials
............................................................. 528
7.3
Period doubling potential
................................................................ 530
7.4
Thue-Morse potential
.................................................................... 530
7.5
Systematic study of substitutional potentials
.......................................... 531
8.
Solutions of the problems
.................................................................... 532
COURSE
18
Schrödinger
equation in a hierarchical potential
by H. Kunz
1.
Introduction
.................................................................................... 551
2.
Hierarchical potentials
........................................................................ 554
3.
Spectral properties of the
Schrödinger
equation
........................................... 557
4.
Liapunov exponents
........................................................................... 558
5.
Spectral measures
............................................................................. 558
COURSE
19
Introduction to multifractal analysis
by J.
Peyrière
1.
Introduction
.................................................................................... 563
2.
Short recalls on measures
.................................................................... 563
2.1
Borei
sets and measures
................................................................. 563
2.2
An example: the trinomial measures
.................................................... 564
3.
Several notions of dimensions
............................................................... 565
3.1
Definitions
................................................................................. 565
3.1.1
Hausdorff measures and dimension
.............................................. 565
3.1.2
The Bouligand-Minkowski dimension (or box dimension )
................. 566
3.1.3
Packing dimension
................................................................. 566
3.2
Estimating the Hausdorff dimension
................................................... 567
3.2.1
Comparison of these dimensions
................................................. 567
3.2.2
Lower bound for dim
.............................................................. 567
3.2.3
Example
............................................................................. 568
4.
The multifractal formalism
................................................................... 569
4.1
Definitions
................................................................................. 569
4.1.1
The pointwise Holder exponent
.................................................. 569
4.1.2
The
τ
function
....................................................................... 569
4.1.3
The multifractal spectrum
.......................................................... 570
4.1.4
The multifractal formula
........................................................... 570
4.2
A counterexample of the multifractal formalism
...................................... 570
4.3
The trinomial measures
.................................................................. 571
XVI
4.4
A few results
.............................................................................. 573
4.5
Negative dimensions
..................................................................... 574
4.6
Concluding remarks
...................................................................... 574
Appendix
1.
Legendre transforms
.............................................................. 575
Appendix
2.
Large deviations
................................................................... 575
Annexes
Current deterministic sequences
......................................................... 585
Glossary
......................................................................................... 595
Extra references
............................................................................... 613
|
any_adam_object | 1 |
author2 | Axel, Françoise |
author2_role | edt |
author2_variant | f a fa |
author_facet | Axel, Françoise |
building | Verbundindex |
bvnumber | BV010387571 |
callnumber-first | Q - Science |
callnumber-label | QC173 |
callnumber-raw | QC173.4.Q36 QD926 |
callnumber-search | QC173.4.Q36 QD926 |
callnumber-sort | QC 3173.4 Q36 |
callnumber-subject | QC - Physics |
classification_rvk | UQ 8750 |
classification_tum | PHY 623f |
ctrlnum | (OCoLC)32687890 (DE-599)BVBBV010387571 |
dewey-full | 530.4/11 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.4/11 |
dewey-search | 530.4/11 |
dewey-sort | 3530.4 211 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Conference Proceeding Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02155nam a2200529 cb4500</leader><controlfield tag="001">BV010387571</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221130 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950911s1995 gw ad|| |||| 10||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">94502990X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540592512</subfield><subfield code="9">3-540-59251-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">2868832482</subfield><subfield code="9">2-86883-248-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32687890</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010387571</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC173.4.Q36</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD926</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.4/11</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8750</subfield><subfield code="0">(DE-625)146603:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 623f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Beyond quasicrystals</subfield><subfield code="b">Les Houches, March 7 - 18, 1994</subfield><subfield code="c">[Centre de Physique]. Eds. Françoise Axel ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer [u.a.]</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 619 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centre de Physique Les Houches</subfield><subfield code="v">3</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Physique mathématique - Congrès</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quasicristaux - Congrès</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quasikristallen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Systèmes, théorie des - Congrès</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasicrystals</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quasikristall</subfield><subfield code="0">(DE-588)4202613-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1994</subfield><subfield code="z">Les Houches</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quasikristall</subfield><subfield code="0">(DE-588)4202613-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Axel, Françoise</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Centre de Physique (Les Houches)</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)2057705-9</subfield><subfield code="4">oth</subfield></datafield><datafield tag="711" ind1="2" ind2=" "><subfield code="a">Winter School Beyond Quasicrystals</subfield><subfield code="d">1994</subfield><subfield code="c">Les Houches</subfield><subfield code="j">Sonstige</subfield><subfield code="0">(DE-588)5158480-3</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-662-03130-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Centre de Physique Les Houches</subfield><subfield code="v">3</subfield><subfield code="w">(DE-604)BV011876452</subfield><subfield code="9">3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung TU Muenchen</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006916517&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006916517</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 1994 Les Houches gnd-content |
genre_facet | Konferenzschrift 1994 Les Houches |
id | DE-604.BV010387571 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:51:38Z |
institution | BVB |
institution_GND | (DE-588)2057705-9 (DE-588)5158480-3 |
isbn | 3540592512 2868832482 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006916517 |
oclc_num | 32687890 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-29T DE-384 DE-12 DE-703 DE-91G DE-BY-TUM DE-83 |
owner_facet | DE-355 DE-BY-UBR DE-29T DE-384 DE-12 DE-703 DE-91G DE-BY-TUM DE-83 |
physical | XVI, 619 S. Ill., graph. Darst. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer [u.a.] |
record_format | marc |
series | Centre de Physique Les Houches |
series2 | Centre de Physique Les Houches |
spelling | Beyond quasicrystals Les Houches, March 7 - 18, 1994 [Centre de Physique]. Eds. Françoise Axel ... Berlin [u.a.] Springer [u.a.] 1995 XVI, 619 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Centre de Physique Les Houches 3 Physique mathématique - Congrès ram Quasicristaux - Congrès ram Quasikristallen gtt Systèmes, théorie des - Congrès ram Quasicrystals Congresses Quasikristall (DE-588)4202613-1 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 1994 Les Houches gnd-content Quasikristall (DE-588)4202613-1 s DE-604 Axel, Françoise edt Centre de Physique (Les Houches) Sonstige (DE-588)2057705-9 oth Winter School Beyond Quasicrystals 1994 Les Houches Sonstige (DE-588)5158480-3 oth Erscheint auch als Online-Ausgabe 978-3-662-03130-8 Centre de Physique Les Houches 3 (DE-604)BV011876452 3 Digitalisierung TU Muenchen application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006916517&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Beyond quasicrystals Les Houches, March 7 - 18, 1994 Centre de Physique Les Houches Physique mathématique - Congrès ram Quasicristaux - Congrès ram Quasikristallen gtt Systèmes, théorie des - Congrès ram Quasicrystals Congresses Quasikristall (DE-588)4202613-1 gnd |
subject_GND | (DE-588)4202613-1 (DE-588)1071861417 |
title | Beyond quasicrystals Les Houches, March 7 - 18, 1994 |
title_auth | Beyond quasicrystals Les Houches, March 7 - 18, 1994 |
title_exact_search | Beyond quasicrystals Les Houches, March 7 - 18, 1994 |
title_full | Beyond quasicrystals Les Houches, March 7 - 18, 1994 [Centre de Physique]. Eds. Françoise Axel ... |
title_fullStr | Beyond quasicrystals Les Houches, March 7 - 18, 1994 [Centre de Physique]. Eds. Françoise Axel ... |
title_full_unstemmed | Beyond quasicrystals Les Houches, March 7 - 18, 1994 [Centre de Physique]. Eds. Françoise Axel ... |
title_short | Beyond quasicrystals |
title_sort | beyond quasicrystals les houches march 7 18 1994 |
title_sub | Les Houches, March 7 - 18, 1994 |
topic | Physique mathématique - Congrès ram Quasicristaux - Congrès ram Quasikristallen gtt Systèmes, théorie des - Congrès ram Quasicrystals Congresses Quasikristall (DE-588)4202613-1 gnd |
topic_facet | Physique mathématique - Congrès Quasicristaux - Congrès Quasikristallen Systèmes, théorie des - Congrès Quasicrystals Congresses Quasikristall Konferenzschrift 1994 Les Houches |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006916517&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV011876452 |
work_keys_str_mv | AT axelfrancoise beyondquasicrystalsleshouchesmarch7181994 AT centredephysiqueleshouches beyondquasicrystalsleshouchesmarch7181994 AT winterschoolbeyondquasicrystalsleshouches beyondquasicrystalsleshouchesmarch7181994 |