Ten physical applications of spectral zeta functions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Berlin [u.a.]
Springer
1995
|
Schriftenreihe: | [Lecture notes in physics / M]
35 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 224 S. graph. Darst. |
ISBN: | 3540602305 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010332077 | ||
003 | DE-604 | ||
005 | 20120302 | ||
007 | t | ||
008 | 950731s1995 gw d||| |||| 00||| ger d | ||
016 | 7 | |a 944888992 |2 DE-101 | |
020 | |a 3540602305 |c Pp. : DM 62.00 |9 3-540-60230-5 | ||
035 | |a (OCoLC)246855577 | ||
035 | |a (DE-599)BVBBV010332077 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-703 |a DE-384 |a DE-91G |a DE-29T |a DE-83 |a DE-11 |a DE-706 | ||
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a SK 680 |0 (DE-625)143252: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UD 8221 |0 (DE-625)145544: |2 rvk | ||
084 | |a MAT 331f |2 stub | ||
100 | 1 | |a Elizalde, Emilio |e Verfasser |4 aut | |
245 | 1 | 0 | |a Ten physical applications of spectral zeta functions |c Emilio Elizalde |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1995 | |
300 | |a XII, 224 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a [Lecture notes in physics / M] |v 35 | |
650 | 0 | 7 | |a Zetafunktion |0 (DE-588)4190764-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zetafunktion |0 (DE-588)4190764-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Zetafunktion |0 (DE-588)4190764-4 |D s |
689 | 1 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 1 | |5 DE-604 | |
810 | 2 | |a M] |t [Lecture notes in physics |v 35 |w (DE-604)BV021852221 |9 35 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006876670&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-006876670 |
Datensatz im Suchindex
_version_ | 1804124753233969152 |
---|---|
adam_text | EMILIO ELIZALDE
TEN PHYSICAL APPLICATIONS
OF SPECTRAL ZETA FUNCTIONS
SPRINGER
CONTENTS
INTRODUCTIO
N AN
D OUTLOO
K 1
1.1 ZETA FUNCTIONS 1
1.1.1 THE RIEMANN ZETA FUNCTION 1
1.1.2 THE HURWITZ ZETA FUNCTION 3
1.1.3 THE EPSTEIN ZETA FUNCTION 4
1.1.4 A WORD ON RELATED BIBLIOGRAPHY 6
1.2 ZETA FUNCTION REGULARIZATION 6
1.2.1 THE ZETA FUNCTION OF A DIFFERENTIAL OPERATOR 6
1.2.2 REGULARIZATION OF TH
E VACUUM ENERGY 7
1.2.3 REGULARIZATION OF ONE-LOOP GRAPHS 8
1.3 EXAMPLES AND A COMPARISON WITH OTHER PROCEDURES 9
1.3.1 SOME EXPLICIT EXAMPLES 9
1.3.2 COMPARISON WITH OTHER REGULARIZATION METHODS 11
1.3.3 A WORD OF WARNING 14
1.4 PRESENT DEVELOPMENTS AND A POINT ON RIGOR 15
1.4.1 CALCULATION OF HEAT-KERNEL COEFFICIENTS ,1
5
1.4.2 DETERMINANT OF TH
E LAPLACIAN 17
1.4.3 PROPER DEFINITION OF TH
E ZETA FUNCTION OF A PARTIA
L
DIFFERENTIAL OPERATOR 19
MATHEMATICA
L FORMULA
S INVOLVIN
G TH
E
DIFFEREN
T ZETA FUNCTION
S 21
2.1 A SIMPLE RECURRENCE FOR TH
E HIGHER DERIVATIVES OF TH
E HURWITZ
ZETA FUNCTION 21
2.2 THE ZETA-FUNCTION REGULARIZATION THEOREM . . ..
. 28
2.2.1 THE THEOREM (SPECIAL FORM) 30
2.3 IMMEDIATE APPLICATION OF TH
E THEOREM 38
2.4 EXPRESSIONS FOR MULTI-SERIES ON COMBINATIONS INVOLVING
ARBITRARY CONSTANTS AND EXPONENTS 41
X
3 A TREATMEN
T O
F TH
E NON-POLYNOMIA
L CONTRI
-
BUTIONS
: APPLICATIO
N T
O CALCULAT
E PARTITIO
N
FUNCTION
S O
F STRING
S AN
D MEMBRANE
S 5
1
3.1 DEALING WITH TH
E NON-POLYNOMICAL TER
M
AER
51
3.1.1 PROOF OF ASYMPTOTICIT
Y OF TH
E SERIES 53
3.1.2 TH
E REMAINDER TER
M AND TH
E POISSON RESUMMATIO
N
FORMULA 58
3.2 NUMERICAL ESTIMATE
S OF TH
E REMAINDER . 60
3.3 APPLICATION: SUMMATIO
N OF TH
E STRING PARTITIO
N FUNCTION FOR
DIFFERENT RANGES OF TH
E TEMPERATUR
E 64
4 ANALYTICA
L AN
D NUMERICA
L STUD
Y O
F INHOMO
-
GENEOU
S EPSTEI
N AN
D EPSTEIN-HURWIT
Z ZET
A
FUNCTION
S 7
3
4.1 EXPLICIT ANALYTICAL CONTINUATION OF INHOMOGENEOUS
EPSTEIN ZETA FUNCTIONS 74
4.1.1 TH
E PARTICULA
R CASE OF TH
E BASIC ONE-DIMENSIONAL
EPSTEIN-HURWIT
Z SERIES 76
4.1.2 TH
E HOMOGENEOUS CASE: CHOWLA-SELBERG S FORMULA ..
. 79
4.1.3 DERIVATION OF TH
E GENERAL FORMULA 80
4.2 NUMERICAL ANALYSIS OF TH
E INHOMOGENEOUS GENERALIZED
EPSTEIN-HURWITZ ZET
A FUNCTION 84
4.2.1 ASYMPTOTI
C EXPANSIONS OF TH
E FUNCTION AN
D IT
S
DERIVATIVES WITH RESPECT T
O TH
E VARIABLE AND
PARAMETER
S 85
5 PHYSICA
L APPLICATION
: TH
E CASIMI
R EFFEC
T 9
7
5.1 ESSENTIALS OF TH
E CASIMIR EFFECT 97
5.1.1 TH
E CLASSICAL CASIMIR EFFECT . . 97
5.1.2 CONNECTION WITH TH
E VAN DER WAALS FORCES AND
TH
E LONDON THEORY 98
5.1.3 TH
E SPECIFIC CONTRIBUTION OF CASIMIR AND POLDER:
RETARDE
D VAN DER WAALS FORCES 99
5.1.4 TH
E LIFSCHITZ THEORY 101
5.2 EXPERIMENTA
L VERIFICATION 103
5.2.1 TH
E FIRST DIRECT EXPERIMENTS
: ABRIKOSOVA & DERYAGIN,
KITCHENER & PROSSER, SPARNAAY ET AL 103
XI
5.2.2 TH
E EXPERIMENT OF TABOR AND WINTERTON
: TRANSITIO
N
FROM NORMAL T
O RETARDE
D VAN DER WAALS FORCES 103
5.2.3 TH
E EXPERIMENT OF SABISKI AND ANDERSON 104
5.2.4 A CONTEMPORAR
Y EXPERIMENT 105
5.3 TH
E CASIMIR EFFECT IN QUANTU
M FIELD THEORY 106
5.3.1 TH
E LOCAL FORMULATION OF TH
E CASIMIR EFFECT 106
5.3.2 TH
E MYSTER
Y OF THE CASIMI
R EFFECT 107
5.3.3 TH
E CONCEPT OF TH
E VACUUM ENERGY 108
5.3.4 TH
E EXPLICIT, REGULARIZED DEFINITION
OF TH
E CASIMIR ENERGY 110
5.3.5 DEFINITION OF TH
E CASIMIR ENERGY DENSITY
AND IT
S RELATION WITH TH
E VACUUM ENERGY IL
L
5.4 A VERY SIMPLE COMPUTATIO
N OF TH
E CASIMIR EFFECT 113
5.4.1 TH
E CASIMIR EFFECT FOR A FREE MASSLESS SCALAR FIELD IN
S
1
X
R
D
AND IN T
2
X R
2
SPACETIMES 114
. 5.4.2 TH
E CASE OF A MASSLESS SCALAR FIELD BETWEEN
P
PERPENDICULAR PAIRS OF PARALLEL WALLS WITH
DIRICHLET BOUNDAR
Y CONDITIONS 117
5.4.3 MASSLESS SCALAR FIELD WITH PERIODIC AND NEUMANN
BOUNDAR
Y CONDITIONS, AND ELECTROMAGNETIC FIELD 122
FOU
R PHYSICA
L APPLICATION
S O
F TH
E
INHOMOGENEOU
S GENERALIZE
D
EPSTEIN-HURWIT
Z ZET
A FUNCTION
S !L2
9
6.1
V
APPLICATION: TH
E CASIMIR ENERGY OVER RIEMANN SURFACES ....,
130
6.2 APPLICATION: KALUZA-KLEI
N MODEL WITH SPHERICAL
COMPACTIFICATION
.
136
6.3 CRITICAL BEHAVIOR OF A FIELD THEORY A
T NON-ZERO TEMPERATUR
E . .14
3
6.4 APPLICATION T
O QUANTIZING THROUG
H TH
E WHEELER-D
E WIT
T
EQUATION 146
6.4.1 EXPLICIT ZETA-FUNCTION CALCULATION OF TH
E ESSENTIAL
DETERMINAN
T AND EXTREM
A OF TH
E POTENTIA
L 147
6.4.2 AN ALTERNATIV
E TREATMEN
T BY MEANS OF EISENSTEIN SERIES 153
XII
7 MISCELLANEOU
S APPLICATION
S COMBININ
G ZET
A
WIT
H OTHE
R REGULARIZATIO
N PROCEDURE
S 15
7
7.1 RELATION BETWEEN TH
E GENERALIZED PAULI-VILLAR
S AND TH
E
COVARIANT REGULARIZATIONS 157
7.2 TH
E CASIMIR ENERGY CORRESPONDING T
O A PIECEWISE
UNIFORM STRING 163
7.2.1 TH
E ZERO TEMPERATUR
E THEORY 166
7.2.2 REGULARIZED CASIMIR ENERGY AND NUMERICAL RESULTS . . . 169
7.2.3 TH
E FINITE TEMPERATUR
E THEORY 173
8 APPLICATION
S T
O GRAVITY
, STRING
S
AN
D P-BRANE
S 17
9
8.1 APPLICATION T
O SPONTANEOUS COMPACTIFICATION
IN TWO-DIMENSIONAL QUANTU
M GRAVITY 180
8.2 APPLICATION T
O TH
E STUD
Y OF TH
E STABILIT
Y
OF TH
E RIGID MEMBRANE . 183
8.2.1 CALCULATION OF TH
E POTENTIA
L 184
8.2.2 TH
E LIMIT OF LARGE SPACETIME DIMENSIONALITY 185
8.2.3 A SADDLE POINT ANALYSIS . 187
8.2.4 EXPLICIT EXPRESSIONS FOR TH
E ZETA-FUNCTION
REGULARIZATION OF TH
E EFFECTIVE POTENTIA
L 188
8.2.5 DISCUSSION OF TH
E GENERAL CASE 190
9 LAS
T APPLICATION
: TOPOLOGICA
L SYMMETR
Y
BREAKIN
G I
N SELF-INTERACTIN
G THEORIE
S 19
3
9.1 GENERAL CONSIDERATIONS 193
9.2 TH
E ONE-LOOP EFFECTIVE POTENTIA
L FOR TH
E SELF-INTERACTING THEOR
Y 195
9.3 TH
E ONE-LOOP TOPOLOGICAL MASS 199
9.4 RENORMALIZATION OF TH
E THEORY * 202
9.5 SYMMETRY BREAKING MECHANISM FOR A MASSLESS SCALAR FIELD . . . 204
REFERENCE
S
20
9
INDE
X 22
1
|
any_adam_object | 1 |
author | Elizalde, Emilio |
author_facet | Elizalde, Emilio |
author_role | aut |
author_sort | Elizalde, Emilio |
author_variant | e e ee |
building | Verbundindex |
bvnumber | BV010332077 |
classification_rvk | SK 180 SK 680 SK 950 UD 8221 |
classification_tum | MAT 331f |
ctrlnum | (OCoLC)246855577 (DE-599)BVBBV010332077 |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01769nam a2200457 cb4500</leader><controlfield tag="001">BV010332077</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120302 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950731s1995 gw d||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">944888992</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540602305</subfield><subfield code="c">Pp. : DM 62.00</subfield><subfield code="9">3-540-60230-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246855577</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010332077</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 680</subfield><subfield code="0">(DE-625)143252:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UD 8221</subfield><subfield code="0">(DE-625)145544:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 331f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Elizalde, Emilio</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ten physical applications of spectral zeta functions</subfield><subfield code="c">Emilio Elizalde</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 224 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">[Lecture notes in physics / M]</subfield><subfield code="v">35</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zetafunktion</subfield><subfield code="0">(DE-588)4190764-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zetafunktion</subfield><subfield code="0">(DE-588)4190764-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Zetafunktion</subfield><subfield code="0">(DE-588)4190764-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">M]</subfield><subfield code="t">[Lecture notes in physics</subfield><subfield code="v">35</subfield><subfield code="w">(DE-604)BV021852221</subfield><subfield code="9">35</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006876670&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006876670</subfield></datafield></record></collection> |
id | DE-604.BV010332077 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:50:40Z |
institution | BVB |
isbn | 3540602305 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006876670 |
oclc_num | 246855577 |
open_access_boolean | |
owner | DE-703 DE-384 DE-91G DE-BY-TUM DE-29T DE-83 DE-11 DE-706 |
owner_facet | DE-703 DE-384 DE-91G DE-BY-TUM DE-29T DE-83 DE-11 DE-706 |
physical | XII, 224 S. graph. Darst. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer |
record_format | marc |
series2 | [Lecture notes in physics / M] |
spelling | Elizalde, Emilio Verfasser aut Ten physical applications of spectral zeta functions Emilio Elizalde Berlin [u.a.] Springer 1995 XII, 224 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier [Lecture notes in physics / M] 35 Zetafunktion (DE-588)4190764-4 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Zetafunktion (DE-588)4190764-4 s DE-604 Mathematische Physik (DE-588)4037952-8 s M] [Lecture notes in physics 35 (DE-604)BV021852221 35 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006876670&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Elizalde, Emilio Ten physical applications of spectral zeta functions Zetafunktion (DE-588)4190764-4 gnd Mathematische Physik (DE-588)4037952-8 gnd |
subject_GND | (DE-588)4190764-4 (DE-588)4037952-8 |
title | Ten physical applications of spectral zeta functions |
title_auth | Ten physical applications of spectral zeta functions |
title_exact_search | Ten physical applications of spectral zeta functions |
title_full | Ten physical applications of spectral zeta functions Emilio Elizalde |
title_fullStr | Ten physical applications of spectral zeta functions Emilio Elizalde |
title_full_unstemmed | Ten physical applications of spectral zeta functions Emilio Elizalde |
title_short | Ten physical applications of spectral zeta functions |
title_sort | ten physical applications of spectral zeta functions |
topic | Zetafunktion (DE-588)4190764-4 gnd Mathematische Physik (DE-588)4037952-8 gnd |
topic_facet | Zetafunktion Mathematische Physik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006876670&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV021852221 |
work_keys_str_mv | AT elizaldeemilio tenphysicalapplicationsofspectralzetafunctions |