Runge-Kutta methods and local uniform grid refinement:
Abstract: "Local uniform grid refinement (LUGR) is an adaptive grid technique for computing solutions of partial differential equations possessing sharp spatial transitions. Using nested, finer-and-finer uniform subgrids, the LUGR technique refines the space grid locally around these transition...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1990
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1990,22 |
Schlagworte: | |
Zusammenfassung: | Abstract: "Local uniform grid refinement (LUGR) is an adaptive grid technique for computing solutions of partial differential equations possessing sharp spatial transitions. Using nested, finer-and-finer uniform subgrids, the LUGR technique refines the space grid locally around these transitions, so as to avoid discretization on a very fine grid covering the entire physical domain. This paper examines the LUGR technique for time-dependent problems when combined with static-regridding. Static-regridding means that in the course of the time evolution, the space grid is adapted at discrete times. The present paper considers the general class of Runge-Kutta methods for the numerical time integration Following the method of lines approach, we develop a mathematical framework for the general Runge-Kutta LUGR method applied to multi-space dimensional problems. We hereby focus on parabolic problems, but a considerable part of the examination applies to hyperbolic problems as well. Much attention is paid to the local error analysis. The central issue here is a 'refinement condition' which is to underly the refinement strategy. By obeying this condition, spatial interpolation errors are controlled in a manner that the spatial accuracy obtained is comparable to the spatial accuracy on the finest grid if this grid would be used without any adaptation A diagonally-implicit Runge-Kutta method is discussed for illustration purposes, both theoretically and numerically. |
Beschreibung: | 50 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010192565 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 950523s1990 |||| 00||| engod | ||
035 | |a (OCoLC)24807144 | ||
035 | |a (DE-599)BVBBV010192565 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Trompert, Ron A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Runge-Kutta methods and local uniform grid refinement |c R. A. Trompert ; J. G. Verwer |
264 | 1 | |a Amsterdam |c 1990 | |
300 | |a 50 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1990,22 | |
520 | 3 | |a Abstract: "Local uniform grid refinement (LUGR) is an adaptive grid technique for computing solutions of partial differential equations possessing sharp spatial transitions. Using nested, finer-and-finer uniform subgrids, the LUGR technique refines the space grid locally around these transitions, so as to avoid discretization on a very fine grid covering the entire physical domain. This paper examines the LUGR technique for time-dependent problems when combined with static-regridding. Static-regridding means that in the course of the time evolution, the space grid is adapted at discrete times. The present paper considers the general class of Runge-Kutta methods for the numerical time integration | |
520 | 3 | |a Following the method of lines approach, we develop a mathematical framework for the general Runge-Kutta LUGR method applied to multi-space dimensional problems. We hereby focus on parabolic problems, but a considerable part of the examination applies to hyperbolic problems as well. Much attention is paid to the local error analysis. The central issue here is a 'refinement condition' which is to underly the refinement strategy. By obeying this condition, spatial interpolation errors are controlled in a manner that the spatial accuracy obtained is comparable to the spatial accuracy on the finest grid if this grid would be used without any adaptation | |
520 | 3 | |a A diagonally-implicit Runge-Kutta method is discussed for illustration purposes, both theoretically and numerically. | |
650 | 4 | |a Error analysis (Mathematics) | |
650 | 4 | |a Runge-Kutta formulas | |
700 | 1 | |a Verwer, Jan |e Verfasser |4 aut | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1990,22 |w (DE-604)BV010177152 |9 1990,22 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006772560 |
Datensatz im Suchindex
_version_ | 1804124596045086720 |
---|---|
any_adam_object | |
author | Trompert, Ron A. Verwer, Jan |
author_facet | Trompert, Ron A. Verwer, Jan |
author_role | aut aut |
author_sort | Trompert, Ron A. |
author_variant | r a t ra rat j v jv |
building | Verbundindex |
bvnumber | BV010192565 |
ctrlnum | (OCoLC)24807144 (DE-599)BVBBV010192565 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02574nam a2200337 cb4500</leader><controlfield tag="001">BV010192565</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950523s1990 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)24807144</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010192565</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Trompert, Ron A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Runge-Kutta methods and local uniform grid refinement</subfield><subfield code="c">R. A. Trompert ; J. G. Verwer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">50 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1990,22</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Local uniform grid refinement (LUGR) is an adaptive grid technique for computing solutions of partial differential equations possessing sharp spatial transitions. Using nested, finer-and-finer uniform subgrids, the LUGR technique refines the space grid locally around these transitions, so as to avoid discretization on a very fine grid covering the entire physical domain. This paper examines the LUGR technique for time-dependent problems when combined with static-regridding. Static-regridding means that in the course of the time evolution, the space grid is adapted at discrete times. The present paper considers the general class of Runge-Kutta methods for the numerical time integration</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Following the method of lines approach, we develop a mathematical framework for the general Runge-Kutta LUGR method applied to multi-space dimensional problems. We hereby focus on parabolic problems, but a considerable part of the examination applies to hyperbolic problems as well. Much attention is paid to the local error analysis. The central issue here is a 'refinement condition' which is to underly the refinement strategy. By obeying this condition, spatial interpolation errors are controlled in a manner that the spatial accuracy obtained is comparable to the spatial accuracy on the finest grid if this grid would be used without any adaptation</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">A diagonally-implicit Runge-Kutta method is discussed for illustration purposes, both theoretically and numerically.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Error analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta formulas</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Verwer, Jan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1990,22</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1990,22</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006772560</subfield></datafield></record></collection> |
id | DE-604.BV010192565 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:48:10Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006772560 |
oclc_num | 24807144 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 50 S. |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Trompert, Ron A. Verfasser aut Runge-Kutta methods and local uniform grid refinement R. A. Trompert ; J. G. Verwer Amsterdam 1990 50 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1990,22 Abstract: "Local uniform grid refinement (LUGR) is an adaptive grid technique for computing solutions of partial differential equations possessing sharp spatial transitions. Using nested, finer-and-finer uniform subgrids, the LUGR technique refines the space grid locally around these transitions, so as to avoid discretization on a very fine grid covering the entire physical domain. This paper examines the LUGR technique for time-dependent problems when combined with static-regridding. Static-regridding means that in the course of the time evolution, the space grid is adapted at discrete times. The present paper considers the general class of Runge-Kutta methods for the numerical time integration Following the method of lines approach, we develop a mathematical framework for the general Runge-Kutta LUGR method applied to multi-space dimensional problems. We hereby focus on parabolic problems, but a considerable part of the examination applies to hyperbolic problems as well. Much attention is paid to the local error analysis. The central issue here is a 'refinement condition' which is to underly the refinement strategy. By obeying this condition, spatial interpolation errors are controlled in a manner that the spatial accuracy obtained is comparable to the spatial accuracy on the finest grid if this grid would be used without any adaptation A diagonally-implicit Runge-Kutta method is discussed for illustration purposes, both theoretically and numerically. Error analysis (Mathematics) Runge-Kutta formulas Verwer, Jan Verfasser aut Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1990,22 (DE-604)BV010177152 1990,22 |
spellingShingle | Trompert, Ron A. Verwer, Jan Runge-Kutta methods and local uniform grid refinement Error analysis (Mathematics) Runge-Kutta formulas |
title | Runge-Kutta methods and local uniform grid refinement |
title_auth | Runge-Kutta methods and local uniform grid refinement |
title_exact_search | Runge-Kutta methods and local uniform grid refinement |
title_full | Runge-Kutta methods and local uniform grid refinement R. A. Trompert ; J. G. Verwer |
title_fullStr | Runge-Kutta methods and local uniform grid refinement R. A. Trompert ; J. G. Verwer |
title_full_unstemmed | Runge-Kutta methods and local uniform grid refinement R. A. Trompert ; J. G. Verwer |
title_short | Runge-Kutta methods and local uniform grid refinement |
title_sort | runge kutta methods and local uniform grid refinement |
topic | Error analysis (Mathematics) Runge-Kutta formulas |
topic_facet | Error analysis (Mathematics) Runge-Kutta formulas |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT trompertrona rungekuttamethodsandlocaluniformgridrefinement AT verwerjan rungekuttamethodsandlocaluniformgridrefinement |