Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial value problems:
Abstract: "This paper discusses parallel iteration schemes for collocation-based, symmetric Runge-Kutta (SRK) methods for solving nonstiff initial-value problems. Our main result is the derivation of four A- stable SRK corrector methods of orders 4, 6, 8, and 10 that optimize the rate of conver...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1993
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1993,20 |
Schlagworte: | |
Zusammenfassung: | Abstract: "This paper discusses parallel iteration schemes for collocation-based, symmetric Runge-Kutta (SRK) methods for solving nonstiff initial-value problems. Our main result is the derivation of four A- stable SRK corrector methods of orders 4, 6, 8, and 10 that optimize the rate of convergence when iterated by means of the highly parallel fixed point iteration process. The resulting PISRK method (parallel iterated SRK method) shows considerably increased efficiency when compared with fixed point iteration process applied to Gauss-Legendre correctors." |
Beschreibung: | 10 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010188305 | ||
003 | DE-604 | ||
005 | 20180302 | ||
007 | t | ||
008 | 950518s1993 |||| 00||| engod | ||
035 | |a (OCoLC)31499771 | ||
035 | |a (DE-599)BVBBV010188305 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Nguyen, Huu Cong |e Verfasser |0 (DE-588)1150724099 |4 aut | |
245 | 1 | 0 | |a Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial value problems |
264 | 1 | |a Amsterdam |c 1993 | |
300 | |a 10 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1993,20 | |
520 | 3 | |a Abstract: "This paper discusses parallel iteration schemes for collocation-based, symmetric Runge-Kutta (SRK) methods for solving nonstiff initial-value problems. Our main result is the derivation of four A- stable SRK corrector methods of orders 4, 6, 8, and 10 that optimize the rate of convergence when iterated by means of the highly parallel fixed point iteration process. The resulting PISRK method (parallel iterated SRK method) shows considerably increased efficiency when compared with fixed point iteration process applied to Gauss-Legendre correctors." | |
650 | 4 | |a Runge-Kutta formulas | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1993,20 |w (DE-604)BV010177152 |9 1993,20 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006768840 |
Datensatz im Suchindex
_version_ | 1804124589815496704 |
---|---|
any_adam_object | |
author | Nguyen, Huu Cong |
author_GND | (DE-588)1150724099 |
author_facet | Nguyen, Huu Cong |
author_role | aut |
author_sort | Nguyen, Huu Cong |
author_variant | h c n hc hcn |
building | Verbundindex |
bvnumber | BV010188305 |
ctrlnum | (OCoLC)31499771 (DE-599)BVBBV010188305 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01562nam a2200289 cb4500</leader><controlfield tag="001">BV010188305</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180302 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950518s1993 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)31499771</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010188305</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nguyen, Huu Cong</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1150724099</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial value problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1993,20</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "This paper discusses parallel iteration schemes for collocation-based, symmetric Runge-Kutta (SRK) methods for solving nonstiff initial-value problems. Our main result is the derivation of four A- stable SRK corrector methods of orders 4, 6, 8, and 10 that optimize the rate of convergence when iterated by means of the highly parallel fixed point iteration process. The resulting PISRK method (parallel iterated SRK method) shows considerably increased efficiency when compared with fixed point iteration process applied to Gauss-Legendre correctors."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta formulas</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1993,20</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1993,20</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006768840</subfield></datafield></record></collection> |
id | DE-604.BV010188305 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:48:04Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006768840 |
oclc_num | 31499771 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 10 S. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Nguyen, Huu Cong Verfasser (DE-588)1150724099 aut Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial value problems Amsterdam 1993 10 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1993,20 Abstract: "This paper discusses parallel iteration schemes for collocation-based, symmetric Runge-Kutta (SRK) methods for solving nonstiff initial-value problems. Our main result is the derivation of four A- stable SRK corrector methods of orders 4, 6, 8, and 10 that optimize the rate of convergence when iterated by means of the highly parallel fixed point iteration process. The resulting PISRK method (parallel iterated SRK method) shows considerably increased efficiency when compared with fixed point iteration process applied to Gauss-Legendre correctors." Runge-Kutta formulas Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1993,20 (DE-604)BV010177152 1993,20 |
spellingShingle | Nguyen, Huu Cong Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial value problems Runge-Kutta formulas |
title | Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial value problems |
title_auth | Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial value problems |
title_exact_search | Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial value problems |
title_full | Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial value problems |
title_fullStr | Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial value problems |
title_full_unstemmed | Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial value problems |
title_short | Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial value problems |
title_sort | parallel iteration of symmetric runge kutta methods for nonstiff initial value problems |
topic | Runge-Kutta formulas |
topic_facet | Runge-Kutta formulas |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT nguyenhuucong paralleliterationofsymmetricrungekuttamethodsfornonstiffinitialvalueproblems |